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Abstract

As Software-Defined Networking (SDN) evolves, its ability to handle highly mobile
environments has become a major challenge. This study examines how three pop-
ular SDN controllers: Open Network Operating System (ONOS), RYU, and Open-
FLow (OF), perform when paired with four distinct mobility models: Manhattan
Grid (MG), Gauss-Markov (GM), Random Direction (RD), and Random Waypoint
(RWP). The primary goal was to determine if transitioning from a traditional re-
active flow management system to a proactive one could mitigate the performance
drops that typically occur when network layouts change.

The results show that while Software-Defined Network (SDN) can scale, standard
reactive setups really struggle with high-mobility models like RWP. Because RWP is
so unpredictable, it consistently caused the highest packet loss in almost every test.
One of the most interesting findings was a major shift in how the RYU controller
performed. While RYU was actually the weakest performer in small or medium-sized
networks, it proved to be much more robust and scalable in large-scale, high-stress
situations, provided it was used with a proactive strategy. In contrast, ONOS and
OF were more reliable for smaller setups, but they eventually hit a performance
ceiling and were outperformed by RYU under heavy stress.

Ultimately, this research suggests that a proactive approach is essential for keeping
a network functional as it gets faster and more crowded. While SDN architecture
can technically handle a high number of nodes, the packet loss seen in reactive mode
shows that standard SDN isn’t fully reliable for high-mobility use cases yet. These
findings offer a practical guide for choosing the right controller and flow management
style based on the specific scale and movement patterns of a network.
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1
Introduction

The emergence of SDN, has evolved into a disruptive paradigm of modern network-
ing that has overcome some of the limitations inherent to traditional network ar-
chitectural models. The escalating need for scalable, programmable, and affordable
networks has exposed many of the disadvantages of legacy network infrastructures,
that typically have been inflexible and difficult to manage [5]. The key innovation
of SDNs is to de-couple the Control Plane from the Data Plane; thus providing the
capability to centrally control and program the network [5]. This new architecture
provides greater flexibility in managing resources within the network, better network
automation capabilities and increased responsiveness to changing traffic demands.

SDN, initially used in data centers and wired network environments through the
use of Open Networking Foundation (ONF) created openflow protocol [5], is now
being used in wireless and mobile network environments as a result of extending the
principles of SDN to those environments, creating software-defined wireless networks
Software-Defined Wireless Networks (SDWN) [20]. The growth in the demand for
seamless connectivity between mobile device ecosystems and iot environments [10]
has prompted this expansion. While SDN has been successful in transforming fixed
wired network infrastructure into dynamic network infrastructures, it will face ad-
ditional challenges in adapting to mobile environments.

Mobility is one of the main difficulties in wireless SDN, since wireless SDN does not
have a fixed environment. Mobility introduces high levels of change (i.e., frequent
topological changes), unreliability (i.e., unpredictable link failures) and a need for
continuous handover between network devices. All three characteristics of mobile
networks create inefficiencies in the placement of controllers within wireless SDN-
based architectures, increase latencies, and add overhead to the control plane of
wireless SDN-based architectures [15]. In addition, existing SDN architectures are
designed primarily with fixed infrastructure in mind and lack a means to effectively
manage dynamic routing, handover and real-time network configuration [22]. There-
fore, it is essential to understand how SDN will be affected by mobility and what
modifications are needed to make SDN more adaptable as mobile networks continue
to evolve.
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The purpose of this research is to assess the effects of mobility on SDN based proto-
cols and identify limitations in current SDN implementations and potential solutions
to increase network performance, reliability and handover efficiency. This study ex-
amines the performance of SDN in a mobile environment, specifically examining the
critical areas of latency, handover time and packet loss, and identifies the critical
areas of limitation and bottleneck that occur due to mobility. Finally, this study
provides solutions and improvements to the adaptability of SDN in highly dynamic
networks and validate these solutions using simulations and experiments and com-
pare the performance of multiple SDN models in a variety of mobility patterns.

1.1 Problem Statement

The need for effective and dependable network topologies has increased due to the
quick spread of wireless devices and the Internet of Things (IoT), especially as we
move toward small and microcells. Mobility management now faces significant ob-
stacles due to this change, including higher latency, increased packet loss, and inter-
ruptions to real-time communication during handovers.

The advancement of network administration has been made possible by Software-
Defined Network (SDN) and OF, which offer centralized control and flexibility. Even
with their fundamental advantages, there is still much to learn about how well they
manage mobility in crowded, dynamic settings. SDN-enabled mobile networks face
several challenges, including long handover times, scalability constraints, and ele-
vated control-plane load. While most research focuses on enhancing SDN for mobil-
ity management, it does not fully examine the baseline performance of common SDN
systems that have not been updated. Due to this gap, the impact of mobility on
SDN protocols remains unclear, making it difficult to identify where modifications
would most effectively enhance their performance in mobile scenarios. In this sense,
the following research questions arise:

• How effective are standard SDN protocols in managing dynamic and rapidly
changing network conditions?

• To what extent do standard SDN implementations address the Scalability (SC)
and Reliability (RE) requirements of large-scale mobile network infrastruc-
tures?

1.2 Solution

We used Mininet-WiFi to simulate an environment with various mobile nodes (4, 32
& 64) and various Access Points (APS) (4 & 16) all connected in a mesh network in
order to address these problems. We recorded data in accordance with various mo-
bility patterns that represent different real-life scenarios. The experiment has been
conducted with multiple controllers for ten rounds in total. To provide a clear image
of the scenarios, their average is then calculated. In order to investigate whether
the outcome might be improved, we later conducted the same experiment using the
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flow entries from the normal experiment (reactive) as pre-installed (proactive) flow
entries. All of our findings center on how proactive experiences enhance reactive
ones.

1.3 Thesis Structure

This thesis is arranged in the following manner. After the introduction comes the
background of the thesis, along with a description of the mobility and the scenarios
they depict in real life. Section 2.1 provides a review of related works, highlighting
existing research on SDN in mobile environments. The system design are presented
in Sections 3. Section 4 provides the experimental setup used for all analysis and
a detailed evaluation of the experimental results. Finally comes the conclusion in
section 5, and also outlines the future work.
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2
Background

Network agility is achieved using SDN, which divides the data plane (forwarding
hardware) from the control plane (brain). In a typical scenario, when a mobile sta-
tion travels between Access Points (APs), the switch must send an OpenFlow Packet-
In message to the controller to query it. In high-mobility settings, this round-trip
communication introduces ”control plane latency” that often exceeds the handover
window, resulting in substantial packet loss. Proactive flow management, in which
the controller pre-installs forwarding rules in the destination switches prior to the
mobile node finishing its transition, has been used to lessen this.

Mininet-WiFi, which expands on conventional SDN emulation by adding wireless
propagation models and mobility patterns, is used to assess the effectiveness of
these mobility management solutions. This environment enables a direct comparison
of common OF implementations by modeling real-world wireless challenges such as
signal fading and handover triggers. This study’s main focus is on how pre-installing
the flow entries avoids the conventional SDN request-response cycle, potentially
preserving a continuous data flow and stabilizing packet loss metrics under abrupt
topology changes.

This study uses four different mobility models within Mininet-WiFi (MG, GM, RWP
& RD) to thoroughly assess the effect of movement on SDN performance. These
models specify the station’s accelerations, velocities, and trajectories, which directly
determine the handover occurrences. The study provides an in-depth overview of
how different OF controllers handle varying degrees of topology instability by testing
across multiple models, ensuring the advantages of pre-installed flow entries remain
comparable across both predictable linear paths and highly dynamic, stochastic
movement patterns.

The particular features of the four selected models are defined as follows in order to
appropriately depict various deployment environments:

• Random Direction: The RD Mobility Model is a stochastic movement pattern
where nodes independently select a random direction and speed to travel along
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straight walk segments. In this model, movement consists of a ”move phase,”
where the node maintains a constant velocity and direction, followed by an
optional ”pause phase” of a specified duration. When a node reaches the sim-
ulation boundary, it follows a predefined border behavior, such as wrapping
around to the opposite side of the field or reflecting back into the area. This
model is frequently chosen for network simulations because it ensures that node
positions and directions are uniformly distributed throughout the movement
space in a steady state. In real life, this model depicts unconstrained move-
ment in open environments, such as pedestrians in a wide open plaza, animals
in a field, or autonomous robots in a disaster recovery zone, where movement
is not restricted by a road grid or specific paths but is eventually limited by
physical or geographic boundaries. [4, 7, 13]

• Random WayPoint: The RWP mobility model is a random movement pattern
where a mobile node travels along a ”zigzag” path consisting of straight-line
segments between destinations known as waypoints. In this model, a node
chooses its next waypoint uniformly at random within a predefined convex area
and moves directly toward it at a velocity selected from a random distribution.
Upon reaching the waypoint, the node may remain stationary for a predefined
”pause” or ”thinking” time before choosing a new destination and resuming its
motion. Over time, this movement leads to a nonuniform spatial distribution
where nodes are most likely to be found in the center of the area, a phenomenon
known as the ”border effect”. [3, 9]

In real life, the RWP model depicts pedestrian movement patterns and the
behavior of mobile entities moving within a constrained field. Specific envi-
ronments it represents include:

– Open Public Spaces: People walking in plazas or parks where they choose
a destination and move straight toward it. [9]

– Office Buildings: The movement of employees or visitors within large
commercial structures. [9]

– Sensor Dispersal: Scenarios where mobile sensors are spread or distributed
across a region. [3]

• Manhattan Grid: The MG Model is a grid-based vehicular movement pattern
designed to emulate the complex road topology of an urban city environment.
In this model, the map consists of organized horizontal and vertical streets,
typically composed of two lanes for each direction—north/south and east/west.
Unlike random models, movement is strictly restricted to these predefined grid
lanes where vehicles move straight, turn left, or turn right at intersections based
on specific probabilities, often set at 0.5 for straight and 0.25 for each turn.
This model is an ideal choice for vehicular ad-hoc network (VANET) research
because it provides a realistic simulation of high-density city scenarios where
geographic constraints like buildings, trees, and roadblocks act as obstacles to
communication. Furthermore, it accounts for time and space limitations by
making a vehicle’s velocity dependent on the previous time slot and the speed of
the preceding node, accurately reflecting the constrained, non-random nature
of real-life urban traffic. [8, 16]
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• Gauss Markov: The GM mobility model is a synthetic movement pattern in
which the current speed and direction of a mobile node are directly influenced
by its speed and direction in the preceding time interval. The model uses a
single tuning parameter, α, to represent different degrees of randomness; set-
ting α to 0 results in maximum randomness (Brownian motion), while setting
it to 1 produces a linear motion. By utilizing this temporal correlation, the
GM model generates realistic movement by ensuring that speed and direction
changes are not abrupt. In a real-life context, it depicts intentional movement
patterns where objects or people have defined target destinations, making it
highly applicable for simulating the behavior of autonomous mobile anchor
nodes in surveillance regions or high-speed automobiles where current velocity
and location are strong indicators of the future state. [1, 25]

2.1 Related Work

Research on using SDN for mobility management is gaining momentum and will
lead to enhancements in Handover Efficiency (HE), Network Scalability (NE) and
user Quality of experience for diverse applications (QoE) in modern wireless envi-
ronments. In the past, there have been many research areas related to mobility
in SDN that have identified a number of problems with mobility in wireless sys-
tems including: pure SDN methodologies; hybrid SDN architecture methodologies;
and proactive versus reactive methodologies in SDN; and SDN applications in next-
generation wireless systems. However, despite the extensive research done so far on
how to use SDN to develop new ideas and optimize existing ideas related to mobility
in wireless systems, little research has been done comparing SDN implementations
such as OF, with respect to their performance in mobile wireless system environ-
ments. The lack of evaluation of these mainstream SDN implementations leaves a
number of open questions related to their upper bounds on performance and their
operating characteristics in real-world mobility scenarios.

2.1.1 SDN-Based Mobility Management: Progress and Limita-
tions

While early studies focused on SDN-driven mobility management as an alternate to
PMIPv6 for lowering signaling load, and handover delay; Kuljaree et al. [22] have
shown that SDN will increase reliability and throughput by enabling flow rerouting
at runtime; however, Shri et al. [18] presented fast split, an SDN-based IP mobility
solution that enables faster handovers by dynamically optimizing paths proactively.
However, this research was limited to simulation studies and were only conducted
on small scale trials and did not address the issue of large scale trial deployments
and scalability.

Therefore, later studies attempted to improve scalability by focusing on distributed
SDN-based architectures. Tien et al. [14] presented S-dmm, a SDN-driven Dis-
tributed Mobility Management (DMM) integration to provide fine-grained flow level
control in 5G network architecture. Similarly, Sanchez et al. [17] proposed a hierar-
chical controller architecture for S-dmm that reduced the signaling overhead in large
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scale IEEE 802.11 networks. Even though both approaches had their advantages,
the majority of them required extensive changes to the original SDN framework
and lacked testing of standard OF-based SDN frameworks in actual-world mobile
environments.

More recently Lo Bello et al. [2] developed FTS-SDN, a SDN-driven TSCH protocol
for Industrial Wireless Sensor Networks (IWSNs) using SDN-wise. The authors eval-
uated the performance of the proposed solution in terms of maintaining the bound of
latency due to mobility on a commercial hardware platform. While the authors re-
ported positive results, they utilized a proprietary SDN protocol (SDN-wise), instead
of utilizing mainstream OF-based SDN controllers. Therefore, the study shows that
there is still a need for evaluating standard OF-based SDN frameworks in mobility
driven scenarios.

2.1.2 Hybrid SDN Solutions for Incremental Deployment

Although there is a growing trend towards developing hybrid SDN architectures
that blend SDN with traditional systems due to the complexity associated with
fully migrating all SDN components, the authors are also examining the use of
hybrid SDN frameworks to leverage the benefits of SDN while still supporting legacy
systems. In addition to enabling dynamic traffic offload between LTE and Wi-Fi,
along with SDN-based network slicing and predictive handover management, Silva
et al. [19] provided a hybrid SDN framework for 4G/5G networks and a number
of other applications, while providing backwards-compatibility for existing Evolved
Packet Core (EPC) systems.

These hybrid solutions allow for greater ease of SDN integration into legacy systems;
however, they may hide some of the limitations of implementing SDN with legacy
systems. Hybrid solutions are able to support both OF-based control logic, and at
least one of the two following alternatives: replacement of OF-based control logic
with alternative logic or abstraction of OF-based control logic. Hybrid solutions do
not make it clear how current mainstream SDN controllers (such as OpenDaylight
and ONOS) will handle mobile users, which use different access technologies to
connect to a SDN-enabled network. Therefore, although hybrid solutions provide
some practical advantages for integrating SDN into legacy systems, they provide
very little insight into the SC and RE of unaltered SDN layers when multiple access
technologies are used to dynamically move data across a SDN-enabled network.

2.1.3 Proactive vs. Reactive Handover Optimization in SDN-
Based Mobility

A variety of techniques have been developed to improve the speed of proactive han-
dover optimization to reduce the amount of time required to transfer packets between
networks in highly dynamic environments. The first study related to optimizing han-
dovers in a dynamic environment were conducted by Chen et al. [6], who created a
mobility-aware SDN called M-SDN. They demonstrated that if a device’s predicted
future location can be determined through the use of location prediction techniques,
then the amount of time lost when a user transitions from one network to another
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can be significantly reduced. Subsequently, Clarissa et al. [12] and Labraoui et al.
[11] extended this work by developing proactive path determination techniques and
utilizing dynamic flow management in both wireless mesh and vehicular networks.

Later, Silva et al. [19] developed a new type of hybrid proactive/reactive handover
technique. This hybrid technique includes proactive decision making regarding cer-
tain decisions (for example, selecting a Wi-Fi network), but utilizes reactive tech-
niques to manage flows after the handover is complete. Although this provides a
balance between determining the correct decision and reducing the level of control
overhead, the performance of this technique has never been evaluated using standard
OF-based SDN controllers, especially in environments where devices move rapidly
and experience many handovers.

Tong et al. [24] designed a novel handover architecture for Software-Defined Hetero-
geneous Networks (SDHetNets), which incorporates three critical innovations: (1)
Echo State Networks for predicting user movement, (2) a fuzzy-AHP decision-making
method for selecting the best network, and (3) multipath Transmission Control Pro-
tocol (TCP) to stabilize connections. Although Tong et al.’s solution achieved better
efficiency in handover operations and higher reliability in services, the solution was
developed using proprietary SDN control logic, not a well-established platform such
as RYU, ONOS, or OpenDaylight. This raises questions about the ability of the so-
lution to operate successfully with systems such as RYU, ONOS, or OpenDaylight.

2.1.4 SDN for Next-Generation Networks: 5G and Vehicular Ap-
plications

SDN is becoming increasingly important in managing mobility in 5G and vehicle
networks. The works of Kuljaree et al. [23] have presented SDNVMM for vehicular
video streaming as well as Sorn et al. [21] have suggested SDN-NEMO for mobile
network resilience. The two studies indicate that there is a lot of promise with SDN
in highly mobile contexts. However, both are often implemented using customized
extensions to SDN systems, and many do not provide information about how the
implementations were made using standardized SDN components. Furthermore,
few of them investigate the behavior of control plane latency, flow rule updates,
and topology change detection using OF. These elements are very important when
evaluating performance in real-world environments.

2.1.5 The Findings

Table 2.1 provides a detailed comparison of the reviewed studies, including their
deployment scenarios. Most works primarily address Latency Reduction (LR), HE,
SC, and Performance Optimization (PO), with some also improving RE and Reduced
Signaling Overhead (RSO). However, key challenges such as Scalability with larger
network (LSD) and QoE remain largely unexplored. These gaps underscore the
need for further investigation into the limitations and optimization opportunities of
standard SDN implementations under dynamic mobility conditions.
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Category Focus Area Network Aspects
LR HE SC PO RE RSO LSD QoE Topology Tools Env. Controller Switch

SDN-Based Mobility Management
[22] ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ Linear Mininet Emulation RYU -
[18] ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ Grid,Random Mininet Emulation Floodlight 36/42
[14] ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ Linear Mininet Emulation RYU 5
[17] ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ - - Emulation RYU -
[2] ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ Star/Mesh Cooja/Contiki Emulation OpenFlow -

Hybrid SDN Solutions
[19] ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓ Hybrid - Simulation RYU -

Proactive vs. Reactive Handover Optimization
[6] ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ Star - Emulation ONOS -
[12] ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ Hybrid Mininet Emulation Floodlight 19/89/178
[11] ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ Mesh CORE Emulation 4,NEON 8
[24] ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓ - Mininet-WiFi Emulation OpenFlow -

SDN for Next-Generation Networks
[23] ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ - NS3,SUMO Simulation OpenFlow -
[21] ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ Mesh - Simulation OpenFLow -

Latency Reduction (LR); Handover Efficiency (HE); Scalability (SC); Performance
Optimization (PO); Reliability (RE); Reduced Signaling Overhead (RSO);
Scalability with larger network (LSD); Quality of experience for diverse

applications (QoE)

Table 2.1 Findings regarding literature review
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Design

The experimental design is divided into 2 phases: ’Deployment of the Experimen-
tation Infrastructure’ and ’Evaluation’. This structure ensures that every stage of
network configuration and performance analysis is carefully evaluated. Figure 3.1
shows the design of the initial phase.

3.1 Deployment of the Experimentation Infrastruc-
ture

This initial phase focuses on establishing a stable network environment for execut-
ing the simulation. It is subdivided into three more phases: ’Infrastructure Test’,
’Experimental Phase’, and ’Pre-Installation’.

3.1.1 Infrastructure Test

There are three main parts to this phase, that serve as the foundation for a successful
experiment. First, we introduce a SDN controller, APS, and a few stationary sta-
tions spread out throughout the grid. Next, we use the pingall command to check
connectivity, which is the next step. If communication between nodes fails after
executing the command, we adjust the APS location by moving them closer until
a proper spacing is found, at which point communication is completely successful.
After it has been corrected, we proceed to the experimental phase.

3.1.2 Experimental Phase:

Once we passed the checking phase, we scaled up the network with different numbers
of stations and APS connected by a mesh topology as part of our performance
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Figure 3.1 Deployment of the Experimentation Infrastructure.
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investigation. We used four mobility models (RD, RWP, MG, and GM) to simulate
real-world movement while evaluating three different SDN controllers: the basic
Mininet controller (OF controller), RYU, and ONOS. To generate traffic, we used
Distributed Internet Traffic Generator (DITG) and Internet Performance Working
Group (iPerf) in a pattern in which even-numbered stations served as receivers and
odd-numbered stations as senders. In this phase, we concentrate mainly on three
tasks: introducing mobility, starting communication, and capturing data from both
APS and stations.

3.1.2.1 Mobility Models

The first task of the experiment was to implement mobility patterns on every network
node. Mobility parameters were changed during the experiment to mimic different
real-world situations rather than employing a static configuration.

To ensure experimental reproducibility and consistency across varying node densi-
ties, a custom Python-based trajectory generator, the MobilityGenerator class, was
developed. This framework automates the creation of .dat trajectory files, allowing
the same movement patterns to be replayed across multiple experimental iterations.
The system is defined by a modular architecture that supports four stochastic mo-
bility models and a unique initialization sequence termed the Intro Phase.

• Phase 1 (Intro Phase): Unlike standard simulations that begin with a static or
arbitrary node distribution, this framework implements a 15-second dynamic
entry sequence. All nodes originate from a central coordinate Pfixed = (60, 60)
and transition toward their model-specific starting positions. This allows the
stations to be assigned to their specific APS before the experiment starts com-
munication.

The core movement logic is governed by the Euclidean distance formula:

d =
√
(x2 − x1)2 + (y2 − y1)2

Through the move towards function, the system calculates incremental coor-
dinate updates based on a velocity vector adjusted to ensure all nodes reach
their designated operational starting points simultaneously. This phase effec-
tively simulates the deployment of mobile units into the field of interest.

• Phase 2 (Mobility Model): The framework implements four distinct models to
simulate various operational environments:

– Random Waypoint: Nodes move toward randomly selected destinations
within the simulation boundaries at a constant velocity. Upon arrival,
a new waypoint is instantly generated. RWP serves as a benchmark for
simulating unpredictable, jerky user movement.

– Gauss-Markov: To achieve more realistic, fluid trajectories, this model in-
troduces temporal dependency using a tuning parameter α = 0.75. The
current velocity is a weighted average of the previous state and a Gaussian
noise component, providing the nodes with ”memory.” Boundary interac-
tion is managed via reflection, where nodes ”bounce” off the simulation
edges.
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– Manhattan Grid: Tailored for urban topographies, this model constrains
movement to a grid with a 50-unit block size. Nodes are initialized at
intersections and restricted to cardinal directions (North, South, East,
West). At each junction, nodes randomly select a neighboring intersec-
tion, mimicking vehicular or pedestrian traffic in a city layout.

– Random Direction: To mitigate the ”density peak” phenomenon, a com-
mon RWP issue where nodes cluster in the center, the RD model requires
nodes to travel in a straight line at a chosen angle until a boundary is
reached. A new direction is only selected after a ”wall” collision, ensuring
a uniform spatial distribution across the field.

• Phase 3 (Data Persistence and Configuration): The framework offers gran-
ular control over the simulation environment, including the configuration of
speed and the spatial boundaries (xmin, ymin, xmax, ymax). Upon completion,
the save output method exports time-series positional data into standardized
.dat files for each individual node. This structured output ensures seamless
integration with network simulators and post-simulation visualization tools.
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Input: Num Nodes N , Boundaries [xmin, xmax, ymin, ymax], Simulation Time T , Ve-
locity s, Model M , Intro Duration tintro, Fixed Start Pfixed, GM parameter α,
Mean velocity µ

Output: Spatio-temporal Node Trajectories D (Standardized .dat format)
Initialization and Pre-calculation

1: Initialize empty trajectory list Di for each node i ∈ {1 . . . N}
2: Determine model-specific start positions Pstart[i] based on model M
3: for each node i ∈ {1 . . . N} do
4: Di[0]← Pfixed % All nodes begin at (60, 60)
5: end for

Phase 1: Intro Phase (Deployment Transition)
6: for each node i ∈ {1 . . . N} do
7: dist←

√
(Pstart[i].x− Pfixed.x)2 + (Pstart[i].y − Pfixed.y)2

8: sintro ← dist/tintro % Calculated to ensure simultaneous arrival
9: for t = 1 tintro do
10: Pnext ← CalculateStep(Di[t− 1], Pstart[i], sintro)
11: Di[t]← Pnext

12: end for
13: end for

Phase 2: Mobility Model (Stochastic Simulation)
14: for t = (tintro + 1) (tintro + T ) do
15: for each node i ∈ {1 . . . N} do
16: if M = ’Random Waypoint’ then
17: Move toward Target; if reached then Target ← Random(x, y) M =

’Gauss-Markov’
18: vt ← αvt−1 + (1− α)µ+

√
1− α2N (0, 1)

19: Update Pnext and apply boundary reflection M = ’Manhattan Grid’
20: Constrain to grid; if intersection then Select random neighbor M =

’Random Direction’
21: Move at θ; if boundary hit then θ ← Uniform(0, 2π)
22: end if
23: Di[t]← Pnext

24: end for
25: end for

Phase 3: Data Persistence and Configuration
26: Export D to standardized .dat files % Save output method
27: return D
Algorithm 1 Mobility Generation Framework
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3.1.2.2 Deploy monitoring functions

This phase concentrates on gathering comprehensive data on the network’s perfor-
mance under various circumstances. In this stage, relevant information is collected,
and it is methodically arranged for further examination. The data captured here are
Flow entries from APS and from stations where we captured WiFi properties and
the position of the nodes.

Capture Data From OvSwitches

Due to architectural differences in how SDN controllers manage and expose flow
telemetry, specialized monitoring scripts were developed for each controller. These
agents run concurrently with the primary simulation script to ensure consistent,
accurate flow-state acquisition.

• Mininet Default Controller (OF): To capture the flows, the OF pipeline is
polled frequently across all simulated APS via the flow capture mechanism,
which is implemented as an asynchronous telemetry agent. The system has
a multi-threaded design, creating concurrent threads to run ’ovs-ofctl dump-
flows’ commands for every APS instance. This allows the system to take a
nearly simultaneous snapshot of the global network state every second. A
parsing engine is then used to separate match fields, flow counters, and action
sets (such as output ports and packet modification instructions) from these
unprocessed ASCII snapshots and convert them into an organized relational
format. The agent uses a mutual exclusion (mutex) lock for thread-safe I/O
operations and a deduplication algorithm based on a composite unique key
(flow cookie, network addresses, and durations) to preserve data integrity and
optimize storage during extended simulation rounds. This ensures that only
unique state transitions are archived with their corresponding experimental
round identifiers and synchronized timestamps.

• RYU controller: A centralized telemetry agent that communicates with the
Northbound REST API of the SDN controller facilitates the collection of flow
information. The agent periodically polls all APS, each identifiable by its 64-bit
Data Path Identifier (DPID), focusing on the controller’s statistical endpoints
(specifically, the /stats/flow/ URI). The agent sends an HTTP GET request
every second to retrieve detailed flow descriptors in JSON format. These de-
scriptors are then analyzed to extract important performance characteristics,
such as flow durations, byte quantities, and granular packet counts. This in-
formation is stored in a structured, CSV-based relational database after being
mapped to specific match criteria, such as ingress ports and MAC address
pairings. A continuous, synchronized longitudinal dataset that links network
load to specific experimental rounds is ensured by the implementation’s robust
exception handling for network timeouts and HTTP errors.

• ONOS controller: A dedicated flow-state monitoring agent that extracts and
normalizes the OpenFlow 1.3 pipeline state in real-time, supports the exper-
imental data gathering. Using a local Southbound interface, this agent calls
’ovs-ofctl dump-flows’ to get immediate snapshots of the forwarding tables
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and ’ovs-vsctl’ to retrieve and store persistent Datapath Identifiers (DPIDs).
Match-action tuples, flow priorities, and statistical counters (n packets, n bytes)
are isolated from the raw ASCII stream by a regular-expression-based parsing
engine that converts complicated datapath syntax into a normalized schema.
The agent re-formats this data into a standard CSV structure. The system
operates on a 1.0 Hz polling frequency, appending each state transition to a
longitudinal dataset tagged with high-precision timestamps and experimental
round identifiers, thereby enabling the correlation of specific flow-table modi-
fications with the dynamic movement of mobile stations.

Capture Data From Hosts

Two distinct datasets were extracted from the mobile stations to characterize net-
work performance and physical dynamics. First, link-layer telemetry was gathered
via the iwconfig utility to monitor association and disassociation events between
stations and APS, providing a granular view of handover scenarios. Second, the
spatial coordinates of each station were recorded at one-second intervals. This posi-
tional data enables the derivation of critical mobility statistics, including Euclidean
distances to infrastructure nodes, speed, and acceleration.

• Position: A specialized background monitoring thread was implemented to
record each mobile station’s real-time Cartesian coordinates, enabling correla-
tion between network performance and actual node movement. The tracking
method retrieves the instantaneous (x, y, z) positions of each target node by
querying the Mininet-WiFi simulation engine at a sampling frequency of 1.0
Hz. These spatial data points are stored in station-specific repositories after
being precisely timestamped to the microsecond level. The subsequent deriva-
tion of crucial mobility metrics, such as inter-node Euclidean distance, node
speed, and acceleration patterns, is crucial for examining how route loss and
physical displacement affect packet delivery ratios.

• WiFi Properties: In parallel with spatial tracking, the experimental frame-
work utilizes a persistent monitoring agent to record the link-layer status of
the wireless interfaces via the iwconfig utility. To retrieve essential association
parameters, such as the Service Set Identifier (SSID), operational frequency,
and the Medium Access Control (MAC) address of the associated APS, asyn-
chronous system calls are used. The agent tracks the station’s movement
across different infrastructure nodes and separates handover events using reg-
ular expression-based parsing of the raw command-line output. The resulting
dataset provides a longitudinal view of the association state and connection
persistence, which, when synchronized with the mobility logs, allows for a
comprehensive evaluation of handover triggers.

3.1.2.3 Generate Traffic

In order to establish a dynamic communication environment, User Datagram Pro-
tocol (UDP) traffic is introduced at this phase. Nodes in pairs exchange packets of
a fixed size; the total volume is determined by the magnitude of the scenario, with
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140 packets for small-scale scenarios and 299 packets for bigger ones. For nodes to
continue actively exchanging data during the simulation, the communication layer
is important.

3.1.3 Pre-Installation

This phase focuses on pushing the already generated flows captured from the reac-
tive method into the APS before communication starts between nodes. A uniform
injection approach was not possible since the three different SDN controllers used
different data formats for flow capture. To ensure a smooth restoration of flow entry
into the APS, three distinct proactive approaches were developed to account for the
unique data recording structures of each controller. Once the flows are pre-installed,
we repeat the Experimental phase to run and collect data generated by the proactive
method.

3.1.3.1 Pre-Install OpenFlow controller

The experimental framework uses a Proactive Flow Pre-installation technique to
assess how control-plane overhead affects network performance. Before any data
transmission is initiated, each APS must manually populate its OpenFlow tables.
Asynchronous flow entries are created via the add-flow command by mapping par-
ticular match criteria, such as source/destination IP addresses and UDP destination
ports, to forwarding instructions based on a predetermined set of communication
pairs. Additionally, a high-priority ARP flow with a FLOOD action is pre-installed
to guarantee network-wide reachability. The conventional request-response cycle
between the switch and the controller (the Packet-In and Flow-Mod exchange) is
circumvented by utilizing the set-fail-mode command to switch the APS to stan-
dalone (or secure) mode. By pre-loading these rules, the framework isolates the
data plane’s raw performance and prevents the switch from falling back to controller
dependency during the experiment.

A validation sub-process is carried out to guarantee the datapath’s integrity after
proactive flows are injected. To obtain a snapshot of the current flow table from
each APS, the system calls ’ovs-ofctl dump-flows’. After tokenizing this raw output,
a customized parsing engine extracts key-value pairs for action sets and match fields,
which are subsequently stored in a normal CSV relational format.
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Input: Network Object G, Set of Communication Triplets P =
{(s, r, p)1, . . . , (s, r, p)n}, Experimental Round R, Protocol T

Output: Proactive Flow Instantiation
Initialization

1: Initialize empty list Lflows

2: farp ← {priority = 100, arp, actions = FLOOD}
3: Add farp to Lflows

Bi-directional Rule Generation
4: for each pair(s, r, p) in P do
5: IPs ← s.IP , IPr ← r.IP
6: ffwd ← {priority = 500, proto = T, src = IPs, dst = IPr, tp dst =

p, action = FLOOD}
7: frep ← {priority = 500, proto = T, src = IPr, dst = IPs, tp src =

p, action = FLOOD}
8: Add ffwd and frep to Lflows

9: end for
Deployment and Verification

10: for each Access Point APi in G do
11: Set APi fail-mode to standalone
12: for each flow in Lflows do
13: Execute Southbound Command: ovs-ofctl add-flow APi, f low
14: end for

Telemetry Archiving
15: Draw ← ovs-ofctl dump-flows APi

16: Call ParseAndSaveFlows(APi, Draw, R)
17: end for

Algorithm 2 Pre-Installation of flowentries in OpenFlow controller

3.1.3.2 Pre-Install RYU controller

In order to evaluate network performance under predetermined traffic patterns, the
experimental framework uses a historical replay method. Control plane synchroniza-
tion, proactive protocol configuration, and restorative flow injection are the three
synchronized processes used to accomplish this.

Initially, the system polls the SDN controller’s REST API using a blocking syn-
chronization function (wait for switches). This guarantees that before any data is
pushed, all Datapath Identifiers (DPIDs) are active and the global topology is fully
registered.

Second, the system executes a proactive configuration step to ensure reachability.
Using the ovs-ofctl utility, an ARP flooding rule (”priority=90,arp,actions=flood”) is
injected into each switch via OpenFlow 1.3. This prevents packet loss during the ad-
dress resolution phase, allowing the replay to proceed without controller intervention
for basic discovery.

Finally, the system extracts the exact flow-matching criteria (InPort, SrcMAC, Dst-
MAC) and action sets from a particular previous experimental round by parsing
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historical CSV information. After that, these entries are sent to the controller’s
/stats/flowentry/add endpoint in JSON-formatted OpenFlow FlowMod messages.

Input: Network Object G, CSV Database D, Target Round Rtarget, Controller C
Output: Proactive Flow Instantiation

Phase 1: Controller Synchronization
1: while Controller C has not registered all AP ∈ G do
2: Poll C.API for connected DPIDs
3: Wait 1 second % Prevent API flooding
4: end while
5: Wait 5 seconds for controller stability

Phase 2: Proactive Protocol Configuration
6: for each Access Point APi in G do
7: Execute shell command on APi:
8: ovs-ofctl add-flow APi -O OpenFlow13 "prior-

ity=90,arp,actions=flood"

9: end for
Phase 3: Restorative Flow Injection

10: for each Access Point APi in G do
11: Live DPID ← G.getDPID(APi)
12: Open CSV file D[APi]
13: for each row in D[APi] do
14: if row.Round == Rtarget and row is unique then
15: Construct Flow Object F :
16: Match← {InPort, SrcMAC,DstMAC}
17: Action← Parse(row.Action)
18: Post F to C.API via /stats/flowentry/add

19: end if
20: end for
21: end for

Algorithm 3 Pre-Installation of Flowentries in RYU controller

3.1.3.3 Pre-Install ONOS controller

A proactive flow instantiation technique is designed that uses past traffic data to
populate the OpenFlow tables of network nodes (APS and switches). The script
creates distinct flow rules by extracting match fields like MAC addresses and ingress
ports from CSV-based flow records. The OpenFlow 1.3 protocol is then used by
the ovs-ofctl software to push these rules to the switches. This implementation’s
”headless” architecture is a vital component; it adds a proactive ARP flooding rule
(priority 100) to every Access Point and filters out any rules that call for controller
intervention. By doing this, the latency overhead of reactive ”packet-in” queries to
a central controller is eliminated, allowing the network to carry out autonomous
forwarding and address resolution.

The approach uses a deduplication logic with a hashing set to guarantee that each
distinct flow-match-action triplet is installed only once in order to maximize ef-
ficiency. By doing this, redundant configuration commands are avoided, and the
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virtual switches’ TCAM (Ternary Content-Addressable Memory) resources are pre-
served. The system creates a deterministic networking environment appropriate for
performance benchmarking and edge-computing scenarios where controller reacha-
bility may be limited by pre-installing these forwarding pathways before the simu-
lation starts.

Input: Network Topology G, CSV Repository D, Round R
Output: Proactive Flow Instantiation
1: for each Access Point APi in G do
2: f ← Load CSV for APi from D
3: Sunique ← ∅ % Initialize deduplication set
4: for each row in f do
5: M ← ConstructMatch(row.In Port, row.MAC)
6: A← NormalizeAction(row.Action)
7: if A involves Controller or {M,A, row.P} ∈ Sunique then
8: continue % Filter reactive dependencies
9: end if
10: Deploy flow via Southbound API: ovs-ofctl add-flow

11: Add {M,A, row.P} to Sunique

12: end for
13: end for
14: Inject global ARP rule: priority=100, arp, action=flood % Headless baseline

Algorithm 4 Pre-Installation of Flowentries in ONOS controller

3.2 Evaluation Phase

Once all data is collected using the reactive method and proactive, we move on to the
next phase. Here, we divided the whole design into two parts: ’Merge and Analyze’
and ’Conclusion’ phase.

3.2.1 Merge and Analyze

In this section, we focus on refining the data and making it suitable for analysis.
This section can be further classified into 3 phases: Data Merging and Statistical
Analysis, Analyze Data, and Visualization (Graph Plotting).

3.2.1.1 Data Merging and Statistical Analysis

The primary objective of this stage is to combine various datasets into a single
structure. We combine the WiFi characteristics of the mobile nodes (gathered from
iwconfig) with their respective physical coordinates and DITG summary files using
automated scripts. Because it provides precise measurements, including packet loss,
bitrate, jitter, and latency, the D-ITG data is essential for packet-level analysis. We
produce an extensive dataset by syncing these files using exact timestamps.
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Figure 3.2 Evaluation Phase.
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In order to make handover analysis easier and for calculating the distance from
APS, we add two more features into the data. An association state that consists of
a binary column is created, with ’0’ denoting a disconnected state and ’1’ denoting an
association with an APS. Another for APS coordinate, which uses the corresponding
SSID to map the fixed coordinates of the APS to the mobile stations. We also extract
a number of physical measures that are crucial for assessing network performance in
connection to mobility using the combined positional data.

Euclidean Distance

The 3D Pythagorean theorem is used to calculate the distance traveled between two
time steps or the distance between the mobile station and the AP. The straight-line
displacement between coordinates (x1, y1, z1) and (x2, y2, z2) is thus given:

d =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

Instantaneous Speed

The rate of displacement over a given time interval (∆t) is used to compute velocity.
We define speed as follows because the data is taken at distinct intervals:

v =
d

∆t

Acceleration

Acceleration is computed by measuring the change in velocity (∆v) during the
elapsed period in order to understand the dynamics of the node’s movement:

a =
v2 − v1
∆t

3.2.1.2 Analyze Data

We created a script that uses the DITG log files and the statistical files for additional
analysis before converting them to plots to improve clarity. Here, we concentrate on
five unique aspects of the station. We compute their correlation analysis (only for
small-scale scenarios), packet loss analysis, performance metrics, mobility statistics,
and associated station analysis (for mid and large-scale only).

Packet Loss Analysis

We used a generic formula to determine the average packet loss (%) across various
scenarios and varying numbers of packets (140 for small-scale and 299 for mid- to
large-scale). To gain an understanding of the entire scene, we focused on the average
of a percentage of stations at the mid-to-large scale, while focusing on individual
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stations at the small scale. The following is the equation that was used in the
analysis:

L% =

(
total packet−

(
1
n

∑n
i=1 Pi

)
total packet

)
× 100

At the mid and large scales, the same methodology was applied, calculating the
average across all stations rather than focusing on individual nodes. This approach
provides an overall evaluation of the entire network scenario. The formula used is:

LScenario =
1

N

N∑
j=1

L̄%j

Where,

• L%: Average Packet Loss Percentage

• total packet: Total Expected Packets

• n: Sample size

• Pi: Received Packets per Sample

•
∑n

i=1 Pi: Aggregate Received Packets

• 1
n

∑
Pi: Mean Received Packets (P̄recv)

• LScenario: The total average packet loss for the entire scenario

• N : The total number of receivers in the sample

• L̄%j: The average packet loss percentage for station j

Later, we visualize this with 95% Confidence Intervals (CI) as vertical error bars
to measure the average results variance and reliability. All the bar plots are made
according to the reactive and proactive controllers used, along with the mobility
used.

Performance Metrices

Here, we focused mainly on generating plots for Connection, Delay, Jitter, Packet
Loss, Bitrate, Speed, and Distance in time series representation and then forming
an overall average performance table.

To calculate the connection graph, we determined the mean for each second across
all test rounds by filtering the data for connected states (Connection == 1). The
first row uses an initial function, whereas the remaining rows do not. The ideal value
(1) is where it begins. The line falls to zero for the duration of the handover if the
Handover Analysis finds a frequent disconnection (occurring in ≥ 5 rounds at the
same time cluster).
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For other metrics, we plotted as continuous line charts. The script calculates the
mean value across all rounds for every second and represents them in the plots.

Once all the graph is plotted, we formed a table where the average (handover,
handover time, delay, speed, distance, packet loss (%), and packets received) for
all the rounds is presented. This highlights the performance of all the stations in
different mobility according to the controller used in the experiment. The handover
time in the table is a weighted Mean and is calculated using the formula:

Tavg =

∑
(Counti ×Durationi)∑

Counti

Where,

• Durationi: How long a single disconnection lasted

• Counti: How many times that specific disconnection happened across all your
test runs

•
∑

Counti: Total Number of Handovers

Mobility Statistics & Network Analysis

To conduct the study of mobility statistics, a statistical aggregation is employed to
gather detailed temporal data into comprehensible performance measures. The files
here used were the statistics file used for mobility statistics and DITG summary file
used for network analysis. For each receiver node, raw telemetry data (distance,
speed and acceleration) for mobility and (delay, jitter and bitrate) for network,
sampled at discrete time intervals are then averaged over the entire duration of
the simulation in order to describe the steady state operation of a station i; this
average value x̄i is the principle attribute of the node and is used to smooth out
transient data to allow for comparative analysis between different mobility models.
The formula for this is shown below.

x̄i =
1

n

n∑
j=1

xi,j

Where,

• xi,j: The raw, instantaneous value of the metric (such as Distance to AP)
captured for station i at time-step j

• n: The total number of temporal samples or rows extracted from the CSV file
for that specific station

• x̄i: The resultant average value for station i

Box-and-whisker plots was used in this framework to evaluate the dispersion and the
consistency of network performance across all nodes. The ”central box” represents
the interquartile range (IQR = Q3 − Q1). This is the area where the middle 50
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percent of station averages exist. The median (Q2) is represented by a horizontal
line in the box and provides a measure of the central tendency that is less affected by
outliers than a mean would be. Additionally, the whiskers represent the farthest data
points from the median that fall within the limits of Q1/3 ± 1.5× IQR. Nodes that
have performance metrics outside of these limits are considered statistical outliers
and can thus be identified for extreme mobility cases or for connectivity failures in
a particular SDN controller environment.

Correlation Analysis

This analysis is performed mainly for Experiments 1 and 2, where the same experi-
ment is repeated at increasing speeds. The correlation was determined by measuring
the statistical relationship between the Scenario Speed (independent variable) and
Network Performance Metrics (dependent variable, such as Packet Loss). It uses
the Pearson Correlation Coefficient (r) to determine whether increasing movement
speed leads to a predictable increase or decrease in network failures.

The script uses the Pearson formula to compute the correlation.

r =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)2

Here,

• x: Represents the Mean Speed of the stations for both scenarios (0 or 1).

• y: Represents the mean packet loss (or other metrics) recorded for that round.

• r: The resulting value between -1 and +1.

The script then uses the resulting r value to drive the colors in a Heatmap. The
following interpretations are derived from the heatmap.

• Positive Correlation (r > 0): Represented in Red. This indicates that as speed
increases, the metric also increases.

• Negative Correlation (r < 0): Represented in Blue. This suggests that the
network performed better at higher speeds (or was unaffected by the change).

• Strength: Values closer to 1.0 or -1.0 show a very strong, predictable relation-
ship, while values near 0 show that speed had almost no consistent impact on
network metrics for that specific controller.

3.2.1.3 Visualization

We created multiple visualizations of our data for different analyses as well. Packet
loss is represented by bar charts with 95 % CI. Performance metrics station data
are presented graphically in time series formats, summarized in tables; Heat Maps
have been used to show correlation of related variables, Box Whisker Plots have
been used to represent Mobile Statistics along with outliers.
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3.2.2 Conclusion

We compare each outcome after analyzing every experiment and creating a graph
of it. Since all of the results were controller-based and concentrated on all of the
mobility used, we can conclude our research by determining which scenario the
controller performed best in, as well as whether the proactive approach has enhanced
the reactive approach.
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4
Evaluation

4.1 Experimental Setup

The study involved five different experimental setups: small (4 APS, 4 stations),
mid (16 APS, 32 stations), and large (16 APS, 64 stations).

Scale ID Configuration AP Spacing Traffic
Tool

γ Setup Rounds

Small
Exp A 4 APS, 4 sta-

tions
100 m DITG 3.7 All Mobile

(Default
speed)

10

Exp B 4 APS, 4 sta-
tions

100 m DITG 3.7 All Mo-
bile (Double
speed)

10

Mid Exp C 16 APS, 32
stations

65 m DITG,
iPerf

3.9 Receiver
stationary,
Sender Mobile

5

Large
Exp D 16 APS, 64

stations
65 m DITG,

iPerf
3.9 All Mobile 10

Exp E 16 APS, 64
stations

65 m DITG,
iPerf

3.9 Receiver
stationary,
Sender Mobile

10

Table 4.1 Detailed Experimental Setup and Simulation Parameters

Each simulation ran for 300 seconds for mid-to-large-scale deployments (16 APS, 32,
and 64 stations) and 140 seconds for small-scale scenarios (4 APS and 4 stations).
Each experiment was set up with mesh topology using Channel 5 and APS were
placed at a spacing of 100 m for small scale and 65 m for mid and large scale.
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Every data collection station was equipped with a dual-link interface: a wired link
for out-of-band signaling with the DITG and a wireless link for experimental data
communication. Receiver processes could be stopped gracefully without affecting the
wireless test data thanks to this arrangement. Each communicating pair was given
a unique port to prevent interference. UDP packets having a payload of 512 bits
were transmitted at a rate of 1 packet/s using DITG and iPerf. Mainly the stations
which we want to collect data used DITG and the rest used iPerf, keeping the same
properties.

To evaluate the effect of flow rule management, the experimental technique was
split into two stages. Pre-installed flow entries (proactive method) were used in the
second phase, whereas reactive flow installation was used in the first. Every mobility
scenario was repeated for 5 to 10 rounds in each phase. The controller was rotated
before data collection started again, once all mobility patterns in the first phase were
finished. Mobility was simulated using two distinct models: a ’defined mobility’
model (only for small scale), which involved deterministic linear movement between
specific start and stop coordinates, and a ’replaying mobility’ model. The latter
was utilized to represent all other mobility patterns by executing coordinates from
a trace file at a rate of one coordinate per second (speed set to 1). Environmental
conditions were simulated using the log-distance propagation model (γ = 3.7 and
3.9), with signal interference managed by wmediumd (noise threshold of -91 dBm
and fading coefficient of 3).

Mobility Models

We have tested SDN Controller on four different mobility models that help us to
analyze how SDN Controller performs on all types of mobility. These models bridge
the gap between simulation and reality by depicting urban traffic, open-space pedes-
trian flow, and high-momentum vehicular movement. By testing under conditions
ranging from random search-and-rescue paths to rigid city layouts, we identified how
varying degrees of movement predictability affect SDN management. Further details
of which mobility represent which real-life enviornment is given in Table 4.2.

Mobility Model Real-Life Envi-
ronment

Ideal Use Case / Application

Manhattan Grid Structured City
Streets

Smart city traffic management

Random Waypoint Open Public
Spaces (Cam-
puses / Parks)

Human pedestrian crowds or mobile user
behavior in malls

Random Direction Border or Area
Patrol

Search and rescue missions or automated
cleaning robots

Gauss-Markov Highways /
Open Air

High-speed vehicles and drones

Table 4.2 Mapping Mobility Models to Real-Life Environments
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4.2 Experiments

To identify how increasing the number of nodes impacts packet loss, several tests
were carried out. The next sections contain the configuration information and related
outcomes for each of these test cases.

4.2.1 Experiment A

A small-scale scenario with four (APS) and four mobile stations was used for the
first assessment. Starting at coordinates [100, 100], the APS were positioned with
consistent 100 m spacing. An effective transmission radius of roughly 110m was
obtained by setting the log-distance path-loss exponent to 3.7 to replicate a realistic
wireless environment. Traffic was sent for a duration of 140 s, with sta1 and sta4
serving as senders and sta2 and sta3 as receivers. All the analyses here were done
based on each station, and the outcome is listed below.

4.2.1.1 The Findings

Packet Loss

We have identified a clear, positive effect on the overall packet loss percentage due
to proactively setting up the network. We have also seen that the proactive setup
has reduced packet loss by 1-6% compared to the reactive setup for each controller.
OF has shown the best average loss rate across our testing, especially in the Defined
Mobility (DM) model, where it was possible to lower loss rates to 22.36% in proac-
tive mode vs. 22.79% in reactive mode. In addition, even under extremely stressful
conditions in the GM model, we have consistently observed that a proactive method-
ology can lower loss rates by about 1-3%. RYU lost about 1.08% less than reactive
mode (from a high of 71.29%) in the GM model using the proactive methodology,
while ONOS lowered the loss rate by the largest amount, from 66.96% in reactive
mode down to 63.11% in proactive mode for this mobility.

In terms of challenge to the controllers, the RWP mobility model ranked second after
the GM model, with average loss rates ranging from about 52% for both ONOS and
OF to 60% for RYU. Although proactive methodology has provided some improve-
ment in RWP, the total gain has been quite small, averaging around 1-1.5%. Thus,
it appears that all three controllers are struggling significantly to adapt to the rapid,
uncoordinated changes in speed and direction found in both the GM and RWP mod-
els. Notably, the largest improvement in performance from a proactive methodology
was observed in the RD mobility model, which showed the largest increase among
all tested mobility patterns.

In terms of packet loss, we found that for this small-scale scenario, OF performs
better, followed by ONOS, and the worst-performing scenario is RYU. A further
detailed comparison of these performance metrics is provided in Fig. 4.8.
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Figure 4.1 Comparative Analysis of Average Packet Loss

Performance Analysis

Here we present the performance of each station individually and state the observa-
tion as follows.

The network dynamics at Station 2 resemble a busy yet controllable path, where
the main obstacles are rational and require quick decision-making. Metrics show
high-density noise in jitter and delay combined with jagged bitrate in the reactive
”stressed navigator” setup, especially in RD and GM models. This suggests the
controller is consistently struggling to keep up with node movement. Nonetheless,
the proactive configuration acts as a ”smooth path”. By pre-installing flows and
eliminating processing overhead, the system clearly mitigates this noise, lowering
the frequency and magnitude of jitter spikes while preserving a stronger connection
status, thereby ”smoothing” the path for data transfer.

Station 3’s network dynamics are an example of a high-velocity environment where
the main obstacle is the station’s quick physical displacement. As the controller in
the reactive ONOS arrangement struggles to keep up with the numerous handovers
required by the station’s fast speed. This shows up as irregular bitrate swings and
dense clusters of jitter and packet loss, especially in the GM and RWP models.
On the other hand, the PreInstall ONOS setup anticipates the station’s trajectory
by proactively placing flows. The proactive approach greatly reduces surrounding
noise, isolates jitter spikes, and normalizes the bitrate to guarantee a more robust
data flow across a high-mobility landscape, even though physical distance still results
in unavoidable connection loss. Figure 4.3 illustrates the performance analysis for
both stations using ONOS and pre-install ONOS controller.
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(a) Performance Analysis Station 2 (ONOS)
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(b) Performance Analysis Station 3 (ONOS)

Figure 4.2 Performance Analysis (ONOS)
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(a) Performance Analysis Station 2 (Pre-Install ONOS)
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(b) Performance Analysis Station 3 (Pre-Install ONOS)

Figure 4.3 Performance Analysis (Pre-Install ONOS)
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A shift from reactive instability to a more stable performance profile is shown in
the comparison of Station 2’s OF and PreInstall OF settings. The network exhibits
an ”event-driven lag” in the reactive OF configuration, where mobility-induced han-
dovers, especially noticeable in the GM and RWP models, cause large vertical spikes
in Delay and Jitter, peaking at roughly 1.0s and 0.28s. Due to the reactive con-
troller’s difficulty processing flow requests during node movement, these latency
surges are directly linked to dense Packet Loss clusters that can reach up to 13 units
and notable Bitrate (Mbps) decreases. On the other hand, the PreInstall OF setup
acts as a ”stabilizing filter”. Although physical disconnections still happen, as the
connection row illustrates, the proactive installation of flow rules decreases jitter
spikes to less than 0.25 seconds and keeps the bitrate steadier.

For Station 3, the performance profile mirrors the trends observed in the previous
station, as the reactive OF configuration suffers from significant ”event-driven lag”
during high-speed transitions. Specifically, under the GM mobility model, Delay and
Jitter reach peak values of approximately 0.6s and 0.4s, respectively. These latency
surges are directly associated with dense Packet Loss clusters that frequently exceed
20 units, alongside a fragmented Bitrate (Mbps) profile that fails to maintain a stable
baseline. Consistent with the results for Station 2, the PreInstall OF method acts
as a stabilizing force, effectively dampening these spikes and smoothing the overall
throughput by eliminating the signaling overhead of reactive flow requests. Figure
4.3 illustrates the performance analysis for both stations using OF and a pre-install
OF controller.
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(a) Performance Analysis Station 2 (OpenFlow)
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(b) Performance Analysis Station 3 (OpenFlow)

Figure 4.4 Performance Analysis (OpenFlow)
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(a) Performance Analysis Station 2 (Pre-Install OpenFlow)
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(b) Performance Analysis Station 3 (Pre-Install OpenFlow)

Figure 4.5 Performance Analysis (Pre-Install OpenFlow)
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The performance analysis for Station 2 illustrates a transition from reactive signaling
bottlenecks to proactive stability when moving from RYU to Preinstall RYU. This
pattern is particularly evident in the Defined Mobility and GM models. Specifically,
under these models, Delay and Jitter reach extreme peaks of 0.5s and 1.5s, respec-
tively. These surges are directly associated with Packet Loss clusters of up to 18
units and deep, jagged drops in the Bitrate (Mbps) profile, reflecting the controller’s
struggle to manage flow rules in real-time during node movement. Using the proac-
tivae method, these have been stabilized with Delay and Jitter reaching a value of
0.3s, and also maintain a more resilient Bitrate profile.

The performance analysis for Station 3 reveals a familiar trend of proactive stabiliza-
tion, though with specific anomalies in certain mobility models. Under the reactive
RYU configuration, the station suffers particularly in the GM model where Delay
and Jitter reach extreme peaks of 0.6s and 1.0s, respectively. These surges are ac-
companied by massive Packet Loss bursts of up to 25 units. While the Preinstall
RYU method successfully stabilizes these metrics for most scenarios, it encounters
a specific struggle under the RD mobility model. In this instance, the proactive
approach actually sees Delay and Jitter peak at 0.6s and 0.8s, whereas the reactive
setup maintained lower values of approximately 0.2s. Furthermore, the proactive
Packet Loss in the RD model increases to 10 units from the reactive baseline of 6
units, indicating a unique performance degradation for this specific mobility pat-
tern when using the pre-installation method. Figure 4.3 illustrates the performance
analysis for both stations using RYU and a pre-install RYU controller.
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Performance Analysis: sta2 (Controller: RYU)

(a) Performance Analysis Station 2 (RYU)
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(b) Performance Analysis Station 3 (RYU)

Figure 4.6 Performance Analysis (RYU)
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(a) Performance Analysis Station 2 (Pre-Install RYU)
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(b) Performance Analysis Station 3 (Pre-Install RYU)

Figure 4.7 Performance Analysis (Pre-Install RYU)
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Due to its high node speeds, the GM mobility model generated the largest packet
loss, followed by RWP. Tables 4.3 contain detailed comparison statistics for each
mobility model under ONOS controllers and for further controller see A.1, and A.2
in A.

Mobility St. Ctrl. Avg
HO

HO
Time
(s)

Speed
(m/s)

Accel.
(m/s2)

Dist.
(m)

Loss
(%)

Loss
(Ct)

Total
Pkt

Delay
(s)

Def. Mob.
sta2

R 2 3.27 2.24 -0.003 74.52 34.71 49 91 0.011
P 2 3.21 2.27 -0.008 77.55 33.36 47 93 0.0082

sta3
R 1 2.44 2.06 0.064 60.30 24.86 35 105 0.015
P 2 2.67 2.092 0.009 63.32 21.43 30 110 0.0109

GM
sta2

R 0 3.25 8.49 -0.10 71.03 57.36 80 60 0.016
P 0 3.25 8.44 -0.12 70.97 54.86 77 63 0.013

sta3
R 5 2.94 15.63 -0.009 89.70 76.57 107 33 0.0164
P 5 4.87 15.67 0.0544 90.03 71.36 100 40 0.019

MG
sta2

R 2 2.75 1.90 -0.003 112.47 46.36 65 75 0.0133
P 2 2.85 1.92 -0.008 112.46 45.43 64 76 0.0134

sta3
R 1 2.83 1.87 -0.006 79.60 43.57 61 79 0.014
P 2 2.50 1.91 -0.003 81.70 43.57 61 79 0.013

RD
sta2

R 2 2.85 4.85 -0.01 89.55 52.00 73 67 0.015
P 2 1.88 4.87 0.007 91.70 42.79 60 80 0.022

sta3
R 3 2.38 3.99 0.038 77.10 54.00 76 64 0.022
P 3 2.067 3.98 0.031 77.67 53.57 75 65 0.015

RWP
sta2

R 2 2.88 4.85 -0.005 90.03 49.07 69 71 0.013
P 2 3.10 4.87 -0.023 90.29 46.36 65 75 0.018

sta3
R 3 3.00 10.27 -0.016 95.46 54.36 76 64 0.014
P 3 2.90 10.37 0.008 95.28 54.79 77 63 0.011

Table 4.3 Performance Metrics for ONOS (R) and Pre-Install ONOS (P) Controllers across
Mobility Models

Mobility Statistics

In our study of node motion, we discovered that a direct relationship existed between
node mobility characteristics (i.e., distance, speed, and acceleration) and the overall
stability of the network. In each of the testing scenarios, the GM model provided
the greatest difficulty for all controllers due to the high variability in speed and the
presence of extreme outliers. This unpredictability of movement was also responsible
for the highest loss rates in each scenario as a result of the frequent topological
changes that occurred within the network. Conversely, the DM model had a much
smaller and more uniform speed distribution than the GM model with less frequency
of speed shift; consequently, the controllers were able to adhere to flow rules more
successfully and maintain the lowest recorded loss rates in each scenario.

Among all the OF demonstrates the most resilience, with a stable distribution of
speeds and distances across all simulations, which translates to superior packet re-
tention. ONOS has an average to above-average performance, but with a greater
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sensitivity than others to speed spike events, particularly in simulation models such
as GM and RD. The greatest variance was found in RYU, which showed the largest
variation in both speed and acceleration processing. RYU lacks statistical consis-
tency and thus may be overwhelmed by rapid node movement and therefore demon-
strate the poorest performance among all the controller platforms in our study.
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(b) Mobility Statistics (ONOS)
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Figure 4.8 Mobility Statistics of All Controllers

4.2.2 Experiment B

The second experiment was conducted using an identical physical setup and motion
parameters to those of experiment 1. The travel time between stations was doubled
by increasing the station speed feature to 2 units/second. To provide consistency
for this increased speed, the running time of DITG was decreased to 70 seconds
(from 140), and the waiting time was shortened from 15 to 7 seconds. The goal of
this second test was to examine how increased speed influences packet loss while
maintaining other test conditions constant.

4.2.2.1 The Findings

Here, we focused on comparing the stations from experiments 1 and 2 rather than
assessing their performance. Speed 0 denotes data obtained at a standard speed,
i.e., experiment 1, while speed 1 corresponds to this experiment.

Packet Loss

Our results indicate that increasing speed significantly increases packet loss when
applied to the OF controller. The GM mobility model showed the most significant
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degradation, with packet loss rising to roughly 74% from 69% in the previous exper-
iment. Additionally, compared to earlier findings, the pre-installation of flow entries
showed a more pronounced performance difference, especially in the GM, and MG
mobility models. Therefore, we can conclude that pre-installation has a stronger
influence on improved speed, with the difference greater than in the baseline exper-
iment, where the improvement was significant even with pre-installation.

We observed nearly opposite results when comparing the RYU controller, as in most
cases increasing speed lead to less packet loss compared to the OF controller. The
most significant performance degradation occurred in GM mobility, where perfor-
mance declined by over 7% from a peak packet loss of 78%. In this case, pre-installing
the flow entries has more influence than what we obtained from the pre-install OF
controller, but the peak in GM mobility is a bit higher (71.8%) than what we ob-
tained from the OF controller (71.0%). Even with all the performance improvement
the RYU controller still achieved the highest packet loss in all scenario compared
to the OF controller. Apart from that, the effects of enhanced speed are nearly
identical to those of normal speed.

When analyzing for the ONOS controller as the station moves at an increasing speed,
we see that it has much greater efficiency. Packet loss for the reactive experiment
dropped from 29.8% to 23.4% (DM), and 53% to 48.9% (RD). Overall, the proactive
experiments performed better than the corresponding baseline experiments, indicat-
ing improved resiliency. Among all models, the GM mobility model had the highest
packet loss. However, its packet loss rate was always lower than that of the other
controllers. The proactive MG mobility model showed the largest drop in packet loss
of 16.5% with respect to the baseline experiment and achieved the best performance
results for all of the controllers evaluated.
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Figure 4.9 Comparison between speed 0 and speed 1 for all controllers.

Increasing node speed and using the RYU controller improve performance, with
almost all mobility achieving lower packet loss. We also observed better perfor-
mance in DM and RD mobility using ONOS. In terms of controller OF and ONOS
achieved almost similar results, whereas RYU struggles as it shows greater packet
loss compared to other controllers. Since GM showed the highest packet loss across
all scenarios, we did not observe any improvement in performance at higher speeds
or with a different controller, unlike other mobility.
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Correlation

To further analyze the impact of speed, a correlation heat map was done on the
reactive controllers. The heat map results are as follows:

• ONOS Controller: ONOS has significant sensitivity to speed at its base level,
but that sensitivity greatly diminishes as speeds increase. In the DM case,
ONOS has a nearly perfect negative relationship with bitrate (-0.96) and a
nearly perfect positive relationship with loss (0.95), indicating that there is
a very predictable and large decrease in performance with each incremental
increase in speed, within low speed range. At twice the speed, those relation-
ships collapse (bitrate is now at -0.10), indicating that ONOS hits some kind of
saturation point, beyond which further increases in speed do little to degrade
the already poor performance metrics.

The MG case is an exception; at normal speed, bitrate has a positive correlation
(0.55) of the same order as the DM case, possibly indicating ONOS can deal
with structured grid movement better than random movements.
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Figure 4.10 Correlation Analysis: Speed 0 vs. Speed 1 for ONOS Controller

• RYU Controller: RYU was the most unstable of the three controllers, with
many of its relationships being reversed as the velocity doubled. The default
speed showed a moderate to strong negative correlation for bitrate (-0.5), delay
(-0.69) for DM. The relationship flipped dramatically; the bitrate went from a -
0.5 to a +0.32 correlation. A flip in the relationship signifies that the controller
has lost its ability to handle traffic predictably, as the overhead associated with
high velocity may have triggered nonlinear delay processing.

RYU’s packet loss metrics were also very volatile. Although they remained
relatively stable in the RWP model, the correlation between loss and speed
flipped in the MG model from 0.12 to -0.44. Such variability suggests that
RYU may struggle to maintain consistent flow table synchronization, as node
handovers occur at high frequencies.
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Figure 4.11 Correlation Analysis: Speed 0 vs. Speed 1 for RYU Controller

• OF Controller: The OF implementation exhibited a linear degradation pat-
tern, where sensitivity to speed typically increased with increasing speed. Un-
like ONOS, OF becomes notably more sensitive at higher speeds. In DM,
the correlation for packet loss moves from -0.34 to -0.64 at double the speed.
This suggests that the controller does not reach a saturated point but rather
continues to degrade as the dynamism of the network environment increases.

OF is uniquely sensitive to the pattern of movement as it struggles significantly
in structured environments like the MG at default speed (loss correlation of
0.66), but shows better resilience in RWP model until speeds are doubled,
where loss correlation then jumps from -0.19 to 0.58.
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Figure 4.12 Correlation Analysis: Speed 0 vs. Speed 1 for OpenFlow Controller

These results indicate that ONOS would be the best choice for high-speed environ-
ments as it shows a performance saturation point where increasing the speed does
not further degrade the performance, with the exception in MG mobility. OF would
provide the most predictable degradation as speed increases, making it the best op-
tion for networks with moderate, consistent speed increases. Finally, RYU would be
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the least desirable option for high mobility networks, as the controller’s response to
speed increases is nonlinear and thus difficult to predict.

4.2.3 Experiment C

The design used in this study utilized 16 APS, and 32 stations. This design had
an even number of stations acting as stationary receivers close to the APS, and an
odd number of stations acting as mobile senders using the mobility models. We
transmitted data for 300 seconds at one packet per second at 512 bits through all
stations, but for evaluation, we only considered 16 stations. Each mobility pattern
was repeated for 5 rounds in the study.

4.2.3.1 The Findings

Like all other experiments, the average packet loss across all stations was done using
95% CI. The study further investigated how stations spread across each APS. Finally,
we provide the performance metrics of all the stations combined and group them by
senders and receivers.

Packet Loss

We showed a consistent reduction in packet loss across all the mobile scenarios using
the proactive method in OF controller. With a lowest packet loss achieved in GM
mobility (55.2%) and highest in MG mobility (65.9%) using the reactive method.
This has been reduced to 42.3% and 55.9%, respectively, using the proactive method.
Across all the mobility scenarios using the proactive method, we got an average
reduction ranging from 7.6% (RD) to a maximum of 12.9% (GM).
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Figure 4.13 Overall packet loss using OpenFlow and Pre-Install OpenFlow controller
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According to the data using ONOS, in every mobile context, the proactive approach
performed better than the reactive setup. The MG scenario reported the highest
packet loss of 65.8% using the reactive configuration, while the RD scenario recorded
the lowest packet loss of 56.7%. When the proactive approach was used, these
numbers decreased to 64.5% and 43.6%. Overall, the proactive approach reduced
packet loss by about 9% with the lowest being in MG (1.3%). But in the GM and
RD situations, when the uncertainty intervals are still rather wide, the CI indicates
a high degree of variation.
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Figure 4.14 Overall packet loss using ONOS and Pre-Install ONOS controller

Regarding the RYU controller, the data indicates that it experiences the highest
packet loss among all tested controllers across every scenario, specifically within RD
mobility. In the RD scenario, it hits a peak average packet loss of 68.6% using
the reactive approach, which is then lowered by nearly 20% through the proactive
method. RYU achieves its highest reactive performance with an average loss of
72.2% in MG mobility. Within this scenario, the transition to the proactive method
yields an improvement of 10.3%, representing a significant gain compared to the
improvements seen in other controllers for the same scenario.

Among all three controllers, ONOS and OF performed almost at the same level
in terms of overall network stability, while RYU showed the most significant im-
provement when switching to a proactive method. In terms of mobility, all three
controllers struggled most while maintaining network stability in more structured
mobility, i.e., MG model, followed by the more erratic pattern of RWP.
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Figure 4.15 Overall packet loss using RYU and Pre-Install RYU controller

Network Analysis

• Delay: The graph shows that ONOS consistently stands out as the most re-
liable performer. In almost every mobility scenario, especially RD and RWP.
It maintains a lower median delay compared to its peers. It also shows how
the GM model pushes all three controllers to their limits. As we can see, the
median delays climb, and the whiskers stretch out, indicating a significant in-
crease in packet delivery volatility. OF generally struggles the most here, often
showing the highest latency peaks. This suggests that as nodes move in more
complex patterns, the OF architecture takes longer to re-establish stable paths
than ONOS framework.
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Figure 4.16 Analysis of Delay for All Controllers

• Jitter: The jitter trends tell a similar story about stability. ONOS shows a
tighter box plot, which means the variation between packet arrival times is kept
to a minimum. On the other hand, the GM model once again causes issues, as
it causes OF to experience massive jitter spikes exceeding 0.05s. While RYU
and OF perform somewhat similarly in the RWP model, they both show much
wider distributions than ONOS, indicating that they aren’t quite as efficient at
handling the rapid topology shifts that happen when nodes suddenly change
direction.
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Figure 4.17 Analysis of Jitter for All Controllers

• Bitrate: The MG appears to be the best option when it comes to raw through-
put, likely because the structured movement allows for more stable connec-
tions. In this case, RYU continuously lags behind with a lower median, while
ONOS and OF are closely matched, both pushing bitrates toward the higher
end of the range. In terms of RD, we can see a visible drop in bitrate across
the board. This is likely because nodes are more prone to hitting the edges of
the simulation area and losing signal. Even in these tough conditions, ONOS
manages to maintain a slightly better edge, though it does show more variance.
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Figure 4.18 Analysis of Bitrate for All Controllers

Performance Metrics

Analysing the performance of each node we figured that MG and GM have the
lowest number of handovers (4) compared to RWP and RD (6). Even having similar
handovers, the handover time across MG and RWP is comparatively higher than
other mobility models, where RWP has the highest average handover time across all
controllers. This higher handover time contributes to getting a higher packet loss in
these scenarios, along with their mobility patterns.

Mobility Ctrl. Role Avg HO Avg HO Time
(s)

Avg Dist. Avg Speed Avg Accel. Avg Loss (%)

GM

R Receiver 0 0.000 25.934 0.000 0.000 59.281
P Receiver 0 0.000 25.934 0.000 0.000 46.212
R Sender 4 3.195 53.739 1.125 0.003 —
P Sender 5 4.066 52.991 1.055 -0.006 —

MG

R Receiver 0 0.000 56.287 0.000 0.000 65.753
P Receiver 0 0.000 56.311 0.000 0.000 64.454
R Sender 4 3.297 41.981 1.809 0.007 —
P Sender 4 3.007 42.410 1.963 0.004 —

RD

R Receiver 0 0.000 25.902 0.000 0.000 56.733
P Receiver 0 0.000 25.928 0.000 0.000 43.595
R Sender 6 3.226 47.475 1.945 0.004 —
P Sender 6 3.314 47.357 1.938 0.003 —

RWP

R Receiver 0 0.000 25.893 0.000 0.000 65.284
P Receiver 0 0.000 25.870 0.000 0.000 56.229
R Sender 6 4.905 51.262 1.908 0.003 —
P Sender 7 3.469 50.997 1.842 -0.007 —

Table 4.4 Average Performance Metrics of all stations for ONOS (R) and PreInstall ONOS
(P) across Mobility Models
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Mobility Ctrl. Role Avg HO Avg HO Time
(s)

Avg Dist. Avg Speed Avg Accel. Avg Loss (%)

GM

R Receiver 0 0.000 25.933 0.000 0.000 55.159
P Receiver 0 0.000 25.780 0.000 0.000 42.260
R Sender 4 4.584 53.669 1.122 -0.000 —
P Sender 5 3.290 53.398 1.109 0.001 —

MG

R Receiver 0 0.000 56.315 0.000 0.000 65.947
P Receiver 0 0.000 56.128 0.000 0.000 55.939
R Sender 4 4.156 42.464 1.964 0.004 —
P Sender 4 3.100 42.675 1.939 0.002 —

RD

R Receiver 0 0.000 25.946 0.000 0.000 59.624
P Receiver 0 0.000 25.874 0.000 0.000 52.040
R Sender 6 2.829 47.675 1.899 0.001 —
P Sender 6 2.882 47.453 1.927 0.000 —

RWP

R Receiver 0 0.000 25.910 0.000 0.000 65.686
P Receiver 0 0.000 25.803 0.000 0.000 54.839
R Sender 6 4.143 51.139 1.874 -0.001 —
P Sender 7 3.380 51.227 1.909 0.003 —

Table 4.5 Average Performance Metrics of all stations for OpenFlow (R) and PreInstall Open-
Flow (P) across Mobility Models

Mobility Ctrl. Role Avg HO Avg HO Time
(s)

Avg Dist. Avg Speed Avg Accel. Avg Loss (%)

GM

R Receiver 0 0.000 25.807 0.000 0.000 65.334
P Receiver 0 0.000 25.835 0.000 0.000 48.629
R Sender 4 4.092 53.083 1.081 0.002 —
P Sender 5 4.199 53.569 1.114 -0.001 —

MG

R Receiver 0 0.000 25.912 0.000 0.000 72.214
P Receiver 0 0.000 25.842 0.000 0.000 61.931
R Sender 4 5.179 42.252 1.953 -0.002 —
P Sender 4 2.859 42.249 1.953 0.002 —

RD

R Receiver 0 0.000 25.847 0.000 0.000 68.604
P Receiver 0 0.000 25.911 0.000 0.000 48.846
R Sender 6 3.836 47.174 1.939 -0.000 —
P Sender 6 2.896 47.537 1.952 0.008 —

RWP

R Receiver 0 0.000 23.776 0.000 0.000 73.512
P Receiver 0 0.000 25.919 0.000 0.000 55.569
R Sender 6 7.319 47.062 1.778 0.005 —
P Sender 7 3.106 51.560 1.928 0.002 —

Table 4.6 Average Performance Metrics of all stations for RYU (R) and PreInstall RYU (P)
across Mobility Models

Mobility Statistics

Spatial distance does not explain why networks fail based on the results of the
analysis. Although the GM model has the highest average distance (approximately
55 m), it produces the least amount of packet loss between controllers. Conversely,
while the MG model has the tightest cluster (lowest mean distance), it has the
largest number of packets lost. Therefore, it appears that how predictable and how
smoothly a mobility trace progresses is significantly more important than simply
being close to a SDN controller for maintaining its path to the controller.

Each model displays a similar speed and acceleration profile regardless of which
SDN controller was used, and each model shows a significant range in speed when
comparing all of the controllers. Small variations exist between the two controllers
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in terms of acceleration, such as RYU’s slightly wider acceleration whiskers as com-
pared to ONOS. However, the small variation in acceleration does not change the
basic behavior of the mobility models. The data indicates that the greatest chal-
lenges to reactive SDN processes arise from high volatility of movement. The RWP
and MG models have characteristics of rapid directional changes and large shifts
in acceleration that result in the largest amount of link breaks, thus producing the
largest amount of packet loss.
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Figure 4.19 Mobility Statistics Analysis For Each Reactive Controller.
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4.2.4 Experiment D

To evaluate controller performance under high-density stress, the experiment was
expanded to include 64 mobile stations and 16 APS. In this setup, even-numbered
stations served as receivers and odd-numbered stations as senders. To offer a repre-
sentative examination of the entire network environment, data gathering was focused
on five particular station pairs. The experimental environment was highly volatile,
as mobility was enabled for all 64 stations.

4.2.4.1 The Findings

After data collection, we concentrated on calculating the average packet loss across
all stations in a bar plot with a 95% CI.

Packet Loss

We showed a consistent reduction in packet loss across all the mobile scenarios using
the proactive method. With a lowest packet loss achieved in MG mobility (74%)
and highest in RD mobility (86.4%) using the reactive OF method. This has been
reduced to 69.1% and 81.2% using the proactive method. Across all the mobility
using the proactive method, we got an average of almost 5% reduction in packet
loss. Even with a lower mean, the CI suggested a high variance in performance.
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Figure 4.20 Overall packet loss using OpenFlow and Pre-Install OpenFlow controller

Using ONOS we found a mixed performance. In some cases, it performed better than
standard OF but slightly higher in certain scenarios. Across GM, RD, and RWP,
ONOS maintains an average loss rate between 83% and 88%. Using a proactive
method, it achieved a notable improvement in MG mobility, with a 67.2% loss, the
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lowest among all three controllers. The average improvement through all mobility
ranges from 3% to 7% in this case. Analyzing the CI for the proactive method, we
found a tighter CI for RD and RWP compared to GM mobility.
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Figure 4.21 Overall packet loss using ONOS and Pre-Install ONOS controller

Among all the controllers, RYU shows the highest packet loss in all scenarios, par-
ticularly in RD mobility. It reaches a maximum average packet loss of 90.9% in RD
scenario, but is reduced by more than 10% using the proactive method. The MG
appears to be the most ’controller-friendly’, achieving an average of approximately
75% across all controllers. Here, the average improvement ranges from 3% to 10%,
which is the highest among the three controllers.
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Figure 4.22 Overall packet loss using ONOS and Pre-Install ONOS controller

According to our analysis, when we increase the number of nodes, it shows a higher
packet loss in RD and RWP followed by GM mobility. MG showed the lowest loss
among all controllers with an average of 75%. Also, when we increased the node, we
observed an almost similar performance in all controllers, which was not seen when
we used smaller scenarios, where RYU was constantly performing worse than the
others.

Network Analysis

• Delay: The analysis shows that ONOS consistently achieves the lowest median
latency across different mobility models, particularly in the RD and RWPmod-
els where its performance is most stable. In contrast, the GM model presents
the most challenge for all controllers, resulting in higher median delays and a
wider spread of data, with OF exhibiting the highest peak latency values. The
increased variability (greater whiskers) in the MG and GM models demon-
strates that the structured movement patterns produce more flow recomputa-
tions events, which are handled by OF and RYU with less effectiveness than
ONOS.
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Figure 4.23 Analysis of Delay for All Controllers

• Jitter: The evaluation shows that ONOS provides the most consistent packet
delivery intervals, maintaining a lower and more compact distribution across
most scenarios. The GM model remains the most unpredictable environment
as it causes OF to reach jitter peaks above 0.05s, which could severely impact
real-time communication. While the RWP model shows relatively comparable
median jitter for all three controllers, RYU and OF display significantly higher
maximum values, indicating that they struggle to maintain stable timing as
nodes change direction and speed randomly.
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Figure 4.24 Analysis of Jitter for All Controllers

• Bitrate: ONOS and OF controllers were able to achieve median bitrate per-
formance better than Ryu in both GM and MG. However, all three con-
trollers perform poorly when using the RD model. Although ONOS shows
the highest overall bitrate with peaks exceeding 3.0 Mbps in the MG model,
its performance displays higher variance, suggesting that while it can maxi-
mize throughput, it remains sensitive to the rapid topology changes inherent
in high-mobility scenarios.
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Figure 4.25 Analysis of Bitrate for All Controllers
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Performance Metrics

According to the analysis, we see an average of 6 to 8 handovers in GM and MG,
whereas RWP and RD have 10 to 12 handovers in the reactive approach. We see
an almost similar average speed and average distance for all mobility with a slightly
higher distance in RWP. This suggests that they had an almost similar signal in
all mobility models. Along with the average handover, the average time of each
handover in RWP and RD is comparatively higher than other mobility. This number
of handovers and their average time tends to peak the packet loss in these mobilities.

Mobility Ctrl. Role Avg HO Avg HO Time
(s)

Avg Dist. Avg Speed Avg Accel. Avg Loss (%)

GM

R Receiver 3 3.662 43.567 1.950 -0.005 83.492
P Receiver 3 3.635 43.469 1.954 0.001 76.737
R Sender 3 3.689 41.968 1.949 -0.001 —
P Sender 3 4.233 41.994 1.956 0.002 —

MG

R Receiver 4 4.007 44.051 1.952 -0.001 74.843
P Receiver 4 3.292 43.991 1.956 -0.004 67.151
R Sender 4 7.884 46.057 1.949 0.000 —
P Sender 4 4.133 46.269 1.955 -0.002 —

RD

R Receiver 6 5.650 48.349 1.955 -0.003 88.555
P Receiver 7 3.104 48.437 1.952 0.000 82.528
R Sender 6 4.686 49.784 1.953 -0.001 —
P Sender 7 3.397 49.766 1.943 0.001 —

RWP

R Receiver 5 4.464 50.630 1.916 -0.007 84.155
P Receiver 5 4.634 50.528 1.950 -0.003 81.405
R Sender 5 5.398 53.962 1.922 -0.006 —
P Sender 6 3.770 54.206 1.949 -0.004 —

Table 4.7 Average Performance Metrics of all stations for ONOS (R) and PreInstall ONOS
(P) across Mobility Models

Mobility Ctrl. Role Avg HO Avg HO Time
(s)

Avg Dist. Avg Speed Avg Accel. Avg Loss (%)

GM

R Receiver 3 4.065 43.964 1.883 -0.006 79.949
P Receiver 3 4.731 43.245 1.693 0.012 72.214
R Sender 3 3.424 41.867 1.878 -0.004 —
P Sender 3 6.105 41.245 1.632 0.010 —

MG

R Receiver 4 8.208 44.131 1.869 0.001 73.950
P Receiver 3 4.198 42.742 1.593 0.015 69.125
R Sender 4 4.732 46.078 1.869 0.003 —
P Sender 3 3.543 45.365 1.590 0.014 —

RD

R Receiver 6 4.765 48.186 1.932 -0.001 86.401
P Receiver 6 4.517 47.842 1.905 0.013 81.231
R Sender 6 5.064 49.483 1.927 0.002 —
P Sender 7 4.164 49.221 1.894 0.010 —

RWP

R Receiver 5 5.236 50.154 1.742 -0.001 83.394
P Receiver 4 4.766 49.500 1.392 0.016 80.227
R Sender 5 6.814 53.905 1.746 -0.002 —
P Sender 4 6.220 53.329 1.395 0.016 —

Table 4.8 Average Performance Metrics of all stations for OpenFlow (R) and PreInstall Open-
Flow (P) across Mobility Models
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Mobility Ctrl. Role Avg HO Avg HO Time
(s)

Avg Dist. Avg Speed Avg Accel. Avg Loss (%)

GM

R Receiver 2 3.806 44.299 1.658 -0.001 87.858
P Receiver 3 4.064 43.546 1.942 -0.001 81.104
R Sender 3 5.110 41.856 1.673 0.000 —
P Sender 3 5.250 41.751 1.940 0.000 —

MG

R Receiver 3 5.806 43.702 1.761 0.002 75.586
P Receiver 4 3.151 44.145 1.954 0.004 69.090
R Sender 3 7.090 45.783 1.756 0.001 —
P Sender 4 2.683 46.110 1.950 0.000 —

RD

R Receiver 5 8.346 47.628 1.687 -0.001 90.902
P Receiver 6 3.723 48.580 1.916 -0.001 80.482
R Sender 5 9.803 49.111 1.680 0.001 —
P Sender 7 3.692 49.656 1.907 -0.002 —

RWP

R Receiver 4 4.880 50.441 1.643 -0.005 85.843
P Receiver 5 4.266 50.473 1.940 -0.000 82.549
R Sender 4 9.306 53.494 1.644 -0.003 —
P Sender 5 4.964 54.104 1.939 0.001 —

Table 4.9 Average Performance Metrics of all stations for RYU (R) and PreInstall RYU (P)
across Mobility Models

Mobility Statistics

Across all controllers, RWP consistently results in the greatest distance between
nodes, while GM maintains the shortest distance. As maximum node distances (up
to 60m) are reached in this mobility, and steady speeds stretch the signal range to
its limit, packet loss is notably higher. Variation in acceleration further stresses con-
troller performance, particularly in the GMmodel, which exhibits the highest volatil-
ity. While ONOS proves the most efficient by maintaining the highest speeds with
comparable loss, RYU demonstrates the lowest efficiency, suffering a peak packet
loss of 90.9% in the RD model despite operating at lower average speeds.
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Figure 4.26 Mobility Statistics Analysis For Each Reactive Controller

4.2.5 Experiment E

In this experiment, we maintained all the same characteristics used in experiment
D, but instead of keeping all the stations mobile, we set only the sender nodes as
mobile nodes and placed the receiver close to the APS for better signal. Also, here
we collected data from 20 stations instead of 10 stations in the last experiment. We
averaged the packet loss for all the stations and plotted the analysis using the bar
plots with 95% CI.

4.2.5.1 The Finding:

We present the average packet loss of all 10 receivers below.

Packet Loss

The OF controller demonstrated a consistent reduction in packet loss when we uti-
lized the proactive method in all scenarios. Reactive OF experienced the highest
average packet loss in the RD model at 80.6%, while the MG model shows the low-
est at 76.6%. The most significant improvement occurred in the GM model, where
loss drops from 78.7% to 72.1%. Despite lower average loss, the MG model with
the proactive method showed a wider CI compared to other models. Here we got
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an average improvement ranging from a minimum of 1.3% in RD to a maximum of
6.6% in GM mobility.
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Figure 4.27 Overall packet loss using OpenFlow and Pre-Install OpenFlow controller

Using reactive ONOS we achieved better performance in all mobility except RWP,
where there’s a slight rise of packet loss from 78% (OF) to 78.9% (ONOS). Using the
proactive method ONOS showed its best performance in GM and RD model, with
loss rates reduced to 66.4% and 67.8%, respectively. Here the average loss ranged
from 2% in MG to 9.6% in GM model.
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Figure 4.28 Overall packet loss using ONOS and Pre-Install ONOS controller
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RYU showed the greatest improvement with the proactive method among all three
controllers, with an average ranging from a minimum of 13.1% to a maximum of
17.9%. The reactive analysis showed the greatest loss in the GM scenario, at 83.9%.
Using the proactive approach, the loss is reduced from 83.0% to 66.5% in the RD sce-
nario, and from 82.5% to 66.2% in the RWP scenario. The lowest for this controller
was achieved for MG model (63.5%). Even with a high packet-loss rate in the re-
active method, RYU showed promising results with the proactive method compared
to other controllers.
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Figure 4.29 Overall packet loss using RYU and Pre-Install RYU controller

According to the analysis, it showed that RWP has a comparatively higher packet
loss throughout all controllers, followed by GM. For RD, a mixed performance has
been noted, as ONOS achieved the lowest packet loss while the other controllers
achieved the highest. Also it can be seen that compared to other controllers ONOS
has an overall better performance in the reactive scenario for all mobility, and in
terms of proactive RYU performed the best as it achieved the lowest packet drop in
all mobility.

Network Analysis

• Delay: The comparison of the network delay among the three controllers in this
study shows that the ONOS controller was the best performing with the least
amount of median delay time in each of the different mobility test cases. Al-
though all controllers exhibit a performance degradation under the GM model,
ONOS maintained the smallest interquartile range of delay time in this model.
Conversely, the OF controller experienced the largest total delay time and was
also the most sensitive to node movement, especially in GM and MG mobility
models. These results indicate that the OF controller’s ability to update flow
entries is less than ideal in high-dynamic environments.
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Figure 4.30 Analysis of Delay for All Controllers

• Jitter: As indicated in the delay analysis, the results of the jitter analysis
provided additional evidence of the differences between the three controllers’
performance in terms of how quickly they delivered packets and how consistent
the packet delivery intervals were. The data showed that ONOS was able
to provide a more stable and predictable delivery interval for packets. As
previously mentioned, the GM mobility model provided the most challenging
environment for the three controllers, producing extreme jitter peak times
greater than .06 seconds for the OF controller. Additionally, the larger whisker
sizes found in the jitter distributions for RYU and OF for each of the different
mobility models further emphasized the lack of predictability in their flow
management during node transitions. On the other hand, the smaller whisker
sizes for ONOS for each of the mobility models demonstrated a more reliable
approach to managing frequent topology updates.
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Figure 4.31 Analysis of Jitter for All Controllers

• Bitrate: ONOS provided the best bitrate performance, especially when the MG
model was used, with bitrate performance peaking over 4.0 Mb/s, and provided
better performance than RYU and OF, which struggled to achieve effective
bitrate performance when simulating node movement using the GM model.
Similar to the previous results, although all three controllers experienced a de-
crease in throughput due to node movement in the GM model, ONOS achieved
the highest median bitrate performance of the three controllers. However, sim-
ilar to the previous results, the higher variances in the bitrate performance for
ONOS for the MG and RD models demonstrate that, although ONOS is ca-
pable of achieving the highest bitrate performance when the nodes move in an
optimal manner and through optimal network conditions, the performance re-
mains dependent upon the physical constraints and the node density variations
present in each of the different mobility models.
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Figure 4.32 Analysis of Bitrate for All Controllers

Performance Metrics

As the setup uses the node pattern used in Experiment D, the number of handovers
for the sender is similar to that experiment. By eliminating mobility from half of
the stations, the system experiences less stress, leading to a more seamless handover.
This configuration improves reliability, decreasing packet loss by an average of 5%
to 10%. Despite the overall reduction in movement, RWP continues to demonstrate
the poorest performance, while GM and RD show a mixed performance.

Mobility Ctrl. Role Avg HO Avg HO Time Avg Dist. Avg Speed Avg Accel. Avg Loss (%)

GM

R Receiver 0 0.000 20.741 0.000 0.000 75.955
P Receiver 0 0.000 20.329 0.000 0.000 66.427
R Sender 3 4.539 54.885 0.658 0.003 —
P Sender 4 3.972 54.503 1.051 -0.006 —

MG

R Receiver 0 0.000 57.899 0.000 0.000 71.616
P Receiver 0 0.000 57.855 0.000 0.000 69.618
R Sender 3 11.709 42.963 1.916 -0.000 —
P Sender 3 3.826 42.940 1.958 0.004 —

RD

R Receiver 0 0.000 25.460 0.000 0.000 70.612
P Receiver 0 0.000 25.469 0.000 0.000 67.831
R Sender 3 4.877 45.130 1.253 0.005 —
P Sender 5 3.893 46.349 1.779 0.004 —

RWP

R Receiver 0 0.000 25.501 0.000 0.000 78.892
P Receiver 0 0.000 25.481 0.000 0.000 69.379
R Sender 6 6.500 51.278 1.952 0.001 —
P Sender 7 3.762 51.132 1.939 -0.002 —

Table 4.10 Average Performance Metrics of all stations for ONOS (R) and PreInstall ONOS
(P) Controllers across Mobility Models
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Mobility Ctrl. Role Avg HO Avg HO Time
(s)

Avg Dist. Avg Speed Avg Accel. Avg Loss (%)

GM

R Receiver 0 0.000 25.460 0.000 0.000 78.737
P Receiver 0 0.000 24.937 0.000 0.000 72.120
R Sender 4 6.012 54.214 1.041 -0.004 —
P Sender 4 4.234 54.693 1.008 0.002 —

MG

R Receiver 0 0.000 25.442 0.000 0.000 76.560
P Receiver 0 0.000 25.131 0.000 0.000 72.201
R Sender 3 4.111 43.014 1.833 -0.002 —
P Sender 3 3.735 42.505 1.511 0.010 —

RD

R Receiver 0 0.000 25.393 0.000 0.000 80.564
P Receiver 0 0.000 25.784 0.000 0.000 79.344
R Sender 5 4.149 46.299 1.791 0.000 —
P Sender 5 5.253 45.768 1.576 0.005 —

RWP

R Receiver 0 0.000 25.476 0.000 0.000 78.022
P Receiver 0 0.000 25.200 0.000 0.000 75.104
R Sender 6 5.827 51.336 1.914 0.004 —
P Sender 6 4.697 50.812 1.895 0.005 —

Table 4.11 Average Performance Metrics of all stations for OpenFlow (R) and PreInstall
OpenFlow (P) across Mobility Models

Mobility Ctrl. Role Avg HO Avg HO Time
(s)

Avg Dist. Avg Speed Avg Accel. Avg Loss (%)

GM

R Receiver 0 0.000 25.442 0.000 0.000 83.929
P Receiver 0 0.000 25.436 0.000 0.000 65.966
R Sender 4 7.620 54.145 1.012 -0.003 —
P Sender 4 6.624 54.382 1.045 -0.001 —

MG

R Receiver 0 0.000 25.415 0.000 0.000 76.592
P Receiver 0 0.000 25.429 0.000 0.000 63.454
R Sender 3 4.257 42.877 1.736 0.003 —
P Sender 3 7.124 42.901 1.922 -0.001 —

RD

R Receiver 0 0.000 25.425 0.000 0.000 83.008
P Receiver 0 0.000 25.435 0.000 0.000 66.542
R Sender 5 5.114 46.259 1.749 0.002 —
P Sender 5 3.438 46.524 1.937 -0.002 —

RWP

R Receiver 0 0.000 25.381 0.000 0.000 82.522
P Receiver 0 0.000 25.437 0.000 0.000 66.161
R Sender 5 9.137 52.253 1.587 0.001 —
P Sender 7 3.627 51.142 1.936 -0.003 —

Table 4.12 Average Performance Metrics of all stations for RYU (R) and PreInstall RYU (P)
across Mobility Models



4.2. Experiments 69

Mobility Statistics

One major outcome was that the GM model has a very significant dependence on
which controller is being used. Specifically, the ONOS environment resulted in GM
having significantly slower average sender speeds (0.65m/s) than both RYU and OF,
which maintained an average speed of approximately 1.0m/s. However, the RWP
model acts as a benchmark as it consistently produced the fastest and most stable
sender speeds in all tested environments, maintaining a high range between 1.6m/s
and 1.9m/s.
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(b) Mobility Analysis (ONOS)
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Figure 4.33 Mobility Statistics Analysis For Each Reactive Controller
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5
Conclusion

These studies findings show that using a proactive approach to manage traffic clearly
produces better performance than traditional reactive approaches, especially in net-
works that have complex structures. In smaller networks, the benefits of proactive
flow management were insignificant. When network node speeds were doubled, sig-
nificant performance degradation was noticed, and both the GM and RWP models
suffered, as they naturally exhibit high rates of mobility and rapidly changing net-
work topologies.

When the motion for the nodes in large-scale environments was reduced by half, a
significant increase in performance occurred, but even then, the RWP model pro-
duced the largest amount of packet loss, almost 80% loss on every controller tested.
This indicates that reactive setups can’t keep up with the random direction and
constant speed changes inherent in the RWP model. The proactive setup alleviated
many of these problems, and when subjected to extreme stress testing conditions in
large-scale environments, the RYU controller was found to be the best performing,
with an improvement of almost 12% in the proactive experiment and also outper-
forming the proactive experiments of other controllers by an average of almost 2%.
This contrasts with mid-scale scenarios, where ONOS and OF provided better re-
liability than RYU, particularly when dealing with the high packet loss triggered
by the MG and RWP models, both having a loss of over 65% in the reactive case
and RYU showing a loss of around 73%. This performance was improved using the
proactive case where OF outperforms all with an average of 55% in both of this
mobility compared to ONOS an average of 60% and RYU 59%.

Results indicate that the RWP model poses the greatest challenge to SDN stabil-
ity, highlighting a significant struggle for controllers to maintain performance in
open-space environments such as campuses or parks. This was followed by high-
speed, momentum-based movement typical of highways GM. Conversely, structured
movement patterns, such as those found in urban city centers MG or systematic
patrols RD, yielded moderate but fluctuating performance levels. These findings are
summarized in Table 5.1.



72 5. Conclusion

Network Scale Method Worst Performance Environment Best Controller

Small Scale
Reactive Open-Space (Highway & Park) OF
Proactive Open-Space (Highway & Park) OF

Mid Scale
Reactive City Centers, Parks & Campuses ONOS / OF
Proactive City Centers, Parks & Campuses OF

Large Scale
Reactive Parks & Campuses ONOS / OF
Proactive Parks & Campuses RYU

Table 5.1 Summary of Experimental Results across SDN Controllers and Mobility Models

A major consideration when selecting an SDN controller is that while ONOS and
OF perform efficiently for small to medium-scale applications, RYU is well-suited for
large-scale, high-stress environments when used with proactive traffic management
techniques. Thus, while SDN is very scalable and capable of supporting a large
number of nodes, the packet loss experienced in this study shows that traditional,
reactive SDN architecture is still unreliable for high mobility applications unless
active traffic management strategies are integrated into the design.

Reproducibility

All experimental scripts used to produce, evaluate, and plot generation in this thesis
can be found in this Git repository: https://github.com/prettore/Mobility_i
n_SDN. The repository contains the whole experimental pipeline followed to produce
the result used in this study.

5.1 Future Work

This study establishes an initial basis to understand the effectiveness of SDN con-
trollers with respect to performance in mobile environments through a proactive
methodology. However, there are numerous other fields that need to be explored
as part of future research. One area of research would include identifying specific
architectural obstructions responsible for the performance degradation of SDN con-
trollers when operating within high mobility environments. Additionally, another
direction of research could compare a scenario combined with multiple SDN con-
troller architectures into a single environment to assess the combined performance.
The third path of research would analyze the effect of hardware diversity (i.e., how
the performance is affected by the use of different physical components) on the
overall performance of the system.
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Mobility St. Ctrl. Avg
HO

HO
Time
(s)

Speed
(m/s)

Accel.
(m/s2)

Dist.
(m)

Loss
(%)

Loss
(Ct)

Total
Pkt

Delay
(s)

Def. Mob.
sta2

R 3 2.40 2.33 -0.011 48.23 19.21 27 113 0.019
P 3 2.60 2.29 -0.010 48.48 18.36 26 114 0.018

sta3
R 2 2.92 2.39 0.074 39.38 26.36 37 103 0.023
P 3 3.31 2.44 0.067 40.18 26.36 37 103 0.023

GM
sta2

R 0 2.33 8.53 -0.148 70.27 59.14 83 57 0.010
P 0 2.00 8.23 -0.113 70.89 57.21 80 60 0.016

sta3
R 6 3.00 15.79 0.090 88.57 74.36 104 36 0.016
P 6 2.89 15.65 0.013 91.35 70.21 98 42 0.022

MG
sta2

R 2 3.00 1.91 0.002 111.61 47.29 66 74 0.011
P 2 3.05 1.89 -0.006 112.48 47.21 66 74 0.022

sta3
R 2 2.39 1.90 0.001 81.66 42.93 60 80 0.012
P 1 3.40 1.88 -0.003 78.92 37.14 52 88 0.041

RD
sta2

R 2 2.12 4.89 0.020 89.36 42.71 60 80 0.015
P 2 2.25 4.57 -0.058 91.62 41.50 58 82 0.032

sta3
R 3 2.13 3.93 -0.000 77.71 52.00 73 67 0.012
P 3 2.00 3.91 -0.024 76.76 45.57 64 76 0.031

RWP
sta2

R 2 1.95 4.91 0.024 89.83 46.64 65 75 0.015
P 2 2.30 4.58 -0.058 91.48 44.21 62 78 0.030

sta3
R 3 2.70 10.34 0.012 95.74 58.07 81 59 0.008
P 3 2.93 10.16 -0.059 95.24 56.14 79 61 0.025

Table A.1 Performance Metrics for OpenFlow (R) and Pre-Install OpenFlow (P) Controllers
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Mobility St. Ctrl. Avg
HO

HO
Time
(s)

Speed
(m/s)

Accel.
(m/s2)

Dist.
(m)

Loss
(%)

Loss
(Ct)

Total
Pkt

Delay
(s)

Def. Mob.
sta2

R 3 2.87 2.24 -0.031 48.43 40.64 57 83 0.034
P 3 2.33 2.31 -0.006 49.34 35.57 50 90 0.033

sta3
R 3 3.12 2.46 0.012 40.42 47.50 66 74 0.035
P 3 3.37 2.56 0.001 41.04 41.50 58 82 0.046

GM
sta2

R 0 2.25 8.63 -0.070 71.03 64.71 91 49 0.018
P 0 3.67 8.31 -0.069 70.21 64.29 90 50 0.015

sta3
R 5 3.04 15.88 0.117 88.88 77.86 109 31 0.021
P 5 5.57 15.47 -0.148 88.99 76.14 107 33 0.033

MG
sta2

R 2 6.00 1.91 -0.002 111.70 59.86 84 56 0.018
P 2 2.85 1.90 -0.001 112.69 55.29 77 63 0.025

sta3
R 1 5.93 1.90 0.003 81.86 50.29 70 70 0.022
P 2 2.82 1.89 0.002 80.75 49.50 69 71 0.032

RD
sta2

R 2 2.32 4.93 0.043 89.85 49.86 70 70 0.020
P 2 2.38 4.86 -0.048 89.95 49.93 70 70 0.023

sta3
R 3 2.38 4.02 0.066 78.09 56.71 79 61 0.019
P 3 2.50 3.96 -0.006 76.82 53.14 74 66 0.036

RWP
sta2

R 2 2.06 4.84 0.015 89.72 56.50 79 61 0.019
P 2 2.30 4.83 0.006 88.97 56.00 78 62 0.028

sta3
R 3 2.67 10.32 0.091 95.58 63.64 89 51 0.011
P 3 3.32 10.34 0.117 94.69 62.57 88 52 0.019

Table A.2 Performance Metrics for RYU (R) and Pre-Install RYU (P) Controllers across
Mobility Models



83

MG GM RD RWP
Mobility Model

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
D

el
ay

 (s
)

Network Analysis Receiver: Delay (s)

Controller
PreInstall ONOS
PreInstall RYU
PreInstall OpenFlow

(a) Proactive Delay stats

MG GM RD RWP
Mobility Model

0.01

0.02

0.03

0.04

0.05

0.06

Ji
tte

r (
s)

Network Analysis Receiver: Jitter (s)

Controller
PreInstall ONOS
PreInstall RYU
PreInstall OpenFlow

(b) Proactive Jitter stats

MG GM RD RWP
Mobility Model

1

2

3

4

5

B
itr

at
e 

(M
bp

s)

Network Analysis Receiver: Bitrate (Mbps)

Controller
PreInstall ONOS
PreInstall RYU
PreInstall OpenFlow

(c) Proactive Bitrate stats

Figure A.1 Network Statistics of Proactove Controller Experiment C

MG GM RD RWP
Mobility Model

0.00

0.02

0.04

0.06

0.08

D
el

ay
 (s

)

Network Analysis Receiver: Delay (s)

Controller
PreInstall ONOS
PreInstall RYU
PreInstall OpenFlow

(a) Proactive Delay stats

MG GM RD RWP
Mobility Model

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Ji
tte

r (
s)

Network Analysis Receiver: Jitter (s)

Controller
PreInstall ONOS
PreInstall RYU
PreInstall OpenFlow

(b) Proactive Jitter stats

MG GM RD RWP
Mobility Model

0.5

1.0

1.5

2.0

2.5

3.0

B
itr

at
e 

(M
bp

s)

Network Analysis Receiver: Bitrate (Mbps)

Controller
PreInstall ONOS
PreInstall RYU
PreInstall OpenFlow

(c) Proactive Bitrate stats

Figure A.2 Network Statistics of Proactove Controller Experiment D



84 A. Supplementary Material

MG GM RD RWP
Mobility Model

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
D

el
ay

 (s
)

Network Analysis Receiver: Delay (s)

Controller
PreInstall ONOS
PreInstall RYU
PreInstall OpenFlow

(a) Proactive Delay stats

MG GM RD RWP
Mobility Model

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Ji
tte

r (
s)

Network Analysis Receiver: Jitter (s)

Controller
PreInstall ONOS
PreInstall RYU
PreInstall OpenFlow

(b) Proactive Jitter stats

MG GM RD RWP
Mobility Model

0

1

2

3

4

5

B
itr

at
e 

(M
bp

s)

Network Analysis Receiver: Bitrate (Mbps)

Controller
PreInstall ONOS
PreInstall RYU
PreInstall OpenFlow

(c) Proactive Bitrate stats

Figure A.3 Network Statistics of Proactove Controller Experiment E


